Developed Analytical Expression for Current Harmonic Distortion of the Pv System's Inverter in Relation To the Solar Irradiance and Temperature

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

This paper deals with modeling and simulation of the total harmonic distortion of the current (THDI) dispatched from the inverter and connected to nonlinear load. The change of THD(I)was examined in relation to the ambient temperature (T) and solar irradiance (G). The developed model is being used to extract parameters for a given THD(I)as a function of temperature and solar radiation. This study outlines the working principle of photovoltaic (PV) panel as well as PV array. Off-grid PV system is modeled by using Matlab/Simulink program, and detailed analytical study has been carried out in this work. The design, modeling and simulation of this study are performed from 50 up to 988 W/m(2)for solar irradiance. Harmonic components have negative effects on the steady-voltage stability of the PV system. Therefore, analytical expression is needed for steady-state stability analysis in order to reduce negative effects. Hence, two analytical expressions of THD(I)were obtained by two new different methods which are statistical package for the social sciences program and genetic expression programming. Eventually, two different methods have been verified by the Matlab/Simulink program in order to find out THD(I)and demonstrated the effectiveness of the proposed strategy. As a result of this study, it is observed that input current THDI of nonlinear load is too high at low irradiance. It is suggested that active harmonic filters should be used at low irradiance in order to produce better quality energy and avoid damages in the PV system.

Description

Adak, Suleyman/0000-0003-1436-2830

Keywords

Solar Irradiance, Photovoltaic Panel Temperature, Total Harmonic Distortion, Photovoltaic System, Nonlinear Load

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo