Predicting Depression and Emotions in the Cross-Roads of Cultures, Para-Linguistics, and Non-Linguistics
dc.authorscopusid | 36241785000 | |
dc.authorscopusid | 57195680712 | |
dc.authorscopusid | 57209850146 | |
dc.authorscopusid | 57195218979 | |
dc.authorscopusid | 57209202409 | |
dc.authorscopusid | 57210791723 | |
dc.authorscopusid | 57219469958 | |
dc.contributor.author | Kaya, H. | |
dc.contributor.author | Fedotov, D. | |
dc.contributor.author | Dresvyanskiy, D. | |
dc.contributor.author | Doyran, M. | |
dc.contributor.author | Mamontov, D. | |
dc.contributor.author | Markitantov, M. | |
dc.contributor.author | Salah, A.A. | |
dc.date.accessioned | 2025-02-15T19:38:16Z | |
dc.date.available | 2025-02-15T19:38:16Z | |
dc.date.issued | 2019 | |
dc.department | Artuklu University | en_US |
dc.department-temp | Kaya H., Namik Kemal University, Çorlu, Turkey; Fedotov D., Ulm University, Ulm, Germany, Sehir University, Istanbul, Turkey; Dresvyanskiy D., Ulm University, Ulm, Germany; Doyran M., Utrecht University, Utrecht, Netherlands; Mamontov D., Ulm University, Ulm, Germany; Markitantov M., SPIIRAS, St. Petersburg, Russian Federation; Salah A.A.A., Utrecht University, Utrecht, Netherlands, Sehir University, Istanbul, Turkey; Kavcar E., Mardin Artuklu University, Mardin, Turkey, ITMO University, St. Petersburg, Russian Federation; Karpov A., SPIIRAS, St. Petersburg, Russian Federation; Salah A.A., Utrecht University, Utrecht, Netherlands, Boǧaziçi University, Istanbul, Turkey | en_US |
dc.description | ACM SIGMM | en_US |
dc.description.abstract | Cross-language, cross-cultural emotion recognition and accurate prediction of affective disorders are two of the major challenges in affective computing today. In this work, we compare several systems for Detecting Depression with AI Sub-challenge (DDS) and Cross-cultural Emotion Sub-challenge (CES) that are published as part of the Audio-Visual Emotion Challenge (AVEC) 2019. For both sub-challenges, we benefit from the baselines, while introducing our own features and regression models. For the DDS challenge, where ASR transcripts are provided by the organizers, we propose simple linguistic and word-duration features. These ASR transcriptbased features are shown to outperform the state of the art audio visual features for this task, reaching a test set Concordance Correlation Coefficient (CCC) performance of 0.344 in comparison to a challenge baseline of 0.120. Our results show that non-verbal parts of the signal are important for detection of depression, and combining this with linguistic information produces the best results. For CES, the proposed systems using unsupervised feature adaptation outperform the challenge baselines on emotional primitives, reaching test set CCC performances of 0.466 and 0.499 for arousal and valence, respectively. © 2019 Association for Computing Machinery. | en_US |
dc.description.provenance | Submitted by GCRIS Admin (gcris@artuklu.edu.tr) on 2025-02-15T19:38:16Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-15T19:38:16Z (GMT). No. of bitstreams: 0 Previous issue date: 2019 | en |
dc.description.sponsorship | Russian Science Foundation, RSF, (18-11-00145) | en_US |
dc.identifier.citationcount | 34 | |
dc.identifier.doi | 10.1145/3347320.3357691 | |
dc.identifier.endpage | 35 | en_US |
dc.identifier.isbn | 9781450369138 | |
dc.identifier.scopus | 2-s2.0-85074945276 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 27 | en_US |
dc.identifier.uri | https://doi.org/10.1145/3347320.3357691 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12514/6217 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Association for Computing Machinery, Inc | en_US |
dc.relation.ispartof | AVEC 2019 - Proceedings of the 9th International Audio/Visual Emotion Challenge and Workshop, co-located with MM 2019 -- 9th International Audio/Visual Emotion Challenge and Workshop, AVEC 2019, held in conjunction with the ACM Multimedia 2019 -- 21 October 2019 -- Nice -- 153196 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Affective Computing | en_US |
dc.subject | Cross-Cultural Emotion Recognition | en_US |
dc.subject | Depression Severity Prediction | en_US |
dc.subject | Ptsd | en_US |
dc.title | Predicting Depression and Emotions in the Cross-Roads of Cultures, Para-Linguistics, and Non-Linguistics | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |