MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Predicting Depression and Emotions in the Cross-Roads of Cultures, Para-Linguistics, and Non-Linguistics

dc.authorscopusid36241785000
dc.authorscopusid57195680712
dc.authorscopusid57209850146
dc.authorscopusid57195218979
dc.authorscopusid57209202409
dc.authorscopusid57210791723
dc.authorscopusid57219469958
dc.contributor.authorKaya, H.
dc.contributor.authorFedotov, D.
dc.contributor.authorDresvyanskiy, D.
dc.contributor.authorDoyran, M.
dc.contributor.authorMamontov, D.
dc.contributor.authorMarkitantov, M.
dc.contributor.authorSalah, A.A.
dc.date.accessioned2025-02-15T19:38:16Z
dc.date.available2025-02-15T19:38:16Z
dc.date.issued2019
dc.departmentArtuklu Universityen_US
dc.department-tempKaya H., Namik Kemal University, Çorlu, Turkey; Fedotov D., Ulm University, Ulm, Germany, Sehir University, Istanbul, Turkey; Dresvyanskiy D., Ulm University, Ulm, Germany; Doyran M., Utrecht University, Utrecht, Netherlands; Mamontov D., Ulm University, Ulm, Germany; Markitantov M., SPIIRAS, St. Petersburg, Russian Federation; Salah A.A.A., Utrecht University, Utrecht, Netherlands, Sehir University, Istanbul, Turkey; Kavcar E., Mardin Artuklu University, Mardin, Turkey, ITMO University, St. Petersburg, Russian Federation; Karpov A., SPIIRAS, St. Petersburg, Russian Federation; Salah A.A., Utrecht University, Utrecht, Netherlands, Boǧaziçi University, Istanbul, Turkeyen_US
dc.descriptionACM SIGMMen_US
dc.description.abstractCross-language, cross-cultural emotion recognition and accurate prediction of affective disorders are two of the major challenges in affective computing today. In this work, we compare several systems for Detecting Depression with AI Sub-challenge (DDS) and Cross-cultural Emotion Sub-challenge (CES) that are published as part of the Audio-Visual Emotion Challenge (AVEC) 2019. For both sub-challenges, we benefit from the baselines, while introducing our own features and regression models. For the DDS challenge, where ASR transcripts are provided by the organizers, we propose simple linguistic and word-duration features. These ASR transcriptbased features are shown to outperform the state of the art audio visual features for this task, reaching a test set Concordance Correlation Coefficient (CCC) performance of 0.344 in comparison to a challenge baseline of 0.120. Our results show that non-verbal parts of the signal are important for detection of depression, and combining this with linguistic information produces the best results. For CES, the proposed systems using unsupervised feature adaptation outperform the challenge baselines on emotional primitives, reaching test set CCC performances of 0.466 and 0.499 for arousal and valence, respectively. © 2019 Association for Computing Machinery.en_US
dc.description.provenanceSubmitted by GCRIS Admin (gcris@artuklu.edu.tr) on 2025-02-15T19:38:16Z No. of bitstreams: 0en
dc.description.provenanceMade available in DSpace on 2025-02-15T19:38:16Z (GMT). No. of bitstreams: 0 Previous issue date: 2019en
dc.description.sponsorshipRussian Science Foundation, RSF, (18-11-00145)en_US
dc.identifier.citationcount34
dc.identifier.doi10.1145/3347320.3357691
dc.identifier.endpage35en_US
dc.identifier.isbn9781450369138
dc.identifier.scopus2-s2.0-85074945276
dc.identifier.scopusqualityN/A
dc.identifier.startpage27en_US
dc.identifier.urihttps://doi.org/10.1145/3347320.3357691
dc.identifier.urihttps://hdl.handle.net/20.500.12514/6217
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherAssociation for Computing Machinery, Incen_US
dc.relation.ispartofAVEC 2019 - Proceedings of the 9th International Audio/Visual Emotion Challenge and Workshop, co-located with MM 2019 -- 9th International Audio/Visual Emotion Challenge and Workshop, AVEC 2019, held in conjunction with the ACM Multimedia 2019 -- 21 October 2019 -- Nice -- 153196en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAffective Computingen_US
dc.subjectCross-Cultural Emotion Recognitionen_US
dc.subjectDepression Severity Predictionen_US
dc.subjectPtsden_US
dc.titlePredicting Depression and Emotions in the Cross-Roads of Cultures, Para-Linguistics, and Non-Linguisticsen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files