MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Sleep arousal detection using one dimensional local binary pattern-based convolutional neural network

dc.authorid 0000-0002-8156-016X
dc.authorid 0000-0002-1432-8360
dc.contributor.author Zan, Hasan
dc.contributor.author Yıldız, Abdulnasır
dc.contributor.author Zan, Hasan
dc.contributor.other Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
dc.date.accessioned 2021-10-20T11:51:43Z
dc.date.available 2021-10-20T11:51:43Z
dc.date.issued 2021
dc.department MAÜ, Meslek Yüksekokulları, Mardin Meslek Yüksekokulu, Elektrik ve Enerji Bölümü en_US
dc.description.abstract Sleep arousal is defined as a shift from deep sleep to light sleep or complete awakening. Arousals cause sleep deprivation by fragmenting sleep, and ultimately, many health problems. Arousals can be induced by well-studied apneas and hypopneas or other sleep orders such as hypoventilation, bruxism, respiratory effort-related arousals. Thus, detection of less-studied non-apnea/hypopnea arousals is important for diagnosis and treatment of sleep disorders. Traditionally, polysomnography (PSG) test that is recording and inspecting overnight physiological signals is used for sleep studies. In this work, a novel method based on one dimensional local binary pattern (1D-LBP) and convolutional neural network (CNN) for automatic arousal detection from polysomnography recordings is proposed. 25 recordings from PhysioNet Challenge 2018 PSG dataset are used for experiments. Each signal in PSG recordings is transformed to a new signal using 1D-LBP, and then segmented using 10-s-long sliding window. The segments are fed to a CNN model formed by stacking 25 layers for classification of non-apnea/hypopnea arousal regions from non-arousal regions. Area under precision-recall curve (AUPRC) and area under receiver operating characteristic curve (AUROC) metrics are used for performance measurement. Experimental results reflect that the proposed method shows a great promise and obtains an AUPRC of 0.934 and an AUROC of 0.866. en_US
dc.description.citation Zan, H., & Yildiz, A. (2021). Sleep Arousal Detection Using One Dimensional Local Binary Pattern-Based Convolutional Neural Network. In 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). IEEE. https://doi.org/10.1109/inista52262.2021.9548369 en_US
dc.identifier.doi 10.1109/inista52262.2021.9548369
dc.identifier.scopus 2-s2.0-85116685751
dc.identifier.uri https://doi.org/10.1109/inista52262.2021.9548369
dc.identifier.uri https://www.scopus.com/record/display.uri?eid=2-s2.0-85116685751&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=fdbb73300c4b80922b2d20e56f8a90e2
dc.identifier.uri https://hdl.handle.net/20.500.12514/2891
dc.indekslendigikaynak Scopus en_US
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof In 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA) en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject sleep arousal, one dimensional local binary pattern, 1D-LBP, deep learning, convolutional neural network, CNN. en_US
dc.title Sleep arousal detection using one dimensional local binary pattern-based convolutional neural network en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication b6be3e7d-3260-4abd-bb65-c5dae94c0182
relation.isAuthorOfPublication.latestForDiscovery b6be3e7d-3260-4abd-bb65-c5dae94c0182
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Sleep_Arousal_Detection_Using_One_Dimensional_Local_Binary_Pattern-Based_Convolutional_Neural_Network.pdf
Size:
1.68 MB
Format:
Adobe Portable Document Format
Description:
Full Text - Conference Proceedings

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: