Energy-Aware Scheduling in Flow Shops: a Novel Artificial Neural Network-Driven Multi-Objective Optimization

dc.contributor.author Aslan, Sehmus
dc.date.accessioned 2025-02-15T19:35:36Z
dc.date.accessioned 2025-09-17T14:28:28Z
dc.date.available 2025-02-15T19:35:36Z
dc.date.available 2025-09-17T14:28:28Z
dc.date.issued 2025
dc.description Aslan, Sehmus/0000-0003-1886-3421 en_US
dc.description.abstract Group technology is a managerial strategy used to optimize production by reducing setup times, lead times, and work-in-process inventories. Research on flow-shop sequence-dependent group scheduling problems (FSDGSPs) has primarily focused on minimizing makespan and total flow time to improve efficiency. However, the need for energy-efficient scheduling in FSDGSPs remains underexplored despite increasing sustainability concerns. To address this, the energy-efficient flow-shop sequence-dependent group scheduling problem (EEFSDGSP) is introduced. A novel multi-objective optimization (MOO) technique, the artificial neural network-based multi-objective genetic algorithm (ANN-MOGA), is proposed to minimize makespan and energy consumption in EEFSDGSP. ANN-MOGA advances MOO by using a neural network to evaluate fitness and guide selection, reducing computational complexity versus traditional methods like NSGA-II and SPEA2. A post-processing step (PPANNS) further enhances solution diversity and distribution. Results show ANN-MOGA, especially with PPANNS, outperforms NSGA-II and competes effectively with SPEA2 in larger problem instances. en_US
dc.identifier.doi 10.1080/0305215X.2024.2420738
dc.identifier.issn 0305-215X
dc.identifier.issn 1029-0273
dc.identifier.scopus 2-s2.0-105001837646
dc.identifier.uri https://doi.org/10.1080/0305215X.2024.2420738
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.ispartof Engineering Optimization en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Flow-Shop Group Scheduling en_US
dc.subject Energy Aware en_US
dc.subject Multi-Objective Optimization en_US
dc.subject Artificial Neural Network en_US
dc.subject Genetic Algorithm en_US
dc.title Energy-Aware Scheduling in Flow Shops: a Novel Artificial Neural Network-Driven Multi-Objective Optimization en_US
dc.title Energy-Aware Scheduling in Flow Shops: A Novel Artificial Neural Network-Driven Multi-Objective Optimization
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Aslan, Sehmus/0000-0003-1886-3421
gdc.author.institutional Aslan, Sehmus
gdc.author.wosid Aslan, Şehmus/Agz-6172-2022
gdc.author.wosid Aslan, Sehmus/Agz-6172-2022
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp [Aslan, Sehmus] Mardin Artuklu Univ, Business Adm, Mardin, Turkiye en_US
gdc.description.endpage 360 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 333 en_US
gdc.description.volume 57 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4404253483
gdc.identifier.wos WOS:001353188900001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.4744335E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 2.04312549
gdc.openalex.normalizedpercentile 0.83
gdc.opencitations.count 0
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.virtual.author Aslan, Şehmus
gdc.wos.citedcount 4
relation.isAuthorOfPublication 76f98a49-f89b-43fc-94a3-18f41bf5c229
relation.isAuthorOfPublication.latestForDiscovery 76f98a49-f89b-43fc-94a3-18f41bf5c229
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery 39ccb12e-5b2b-4b51-b989-14849cf90cae

Files