MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Investigation of Antibacterial and Antifungal Efficacy of Zinc and Silver Nanoparticles Synthesized from Nasturtium officinale

Thumbnail Image

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Ankara University

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Nanoparticles are nano-sized materials that can be widely used in fields such as medicine, pharmacology, and industry. The use of natural and easily available materials in nanoparticle synthesis is preferable for economic reasons. Plants are extremely suitable for the synthesis of nanoparticles due to their wide availability and the large number of components they contain with various properties. For this purpose, silver nanoparticles and zinc nanoparticles (AgNPs and ZnNPs), two different nanoparticles were synthesized from an edible plant, watercress (Nasturtium officinale). Scanning electron microscopy, scanning electron microscopy-energy dispersive X-ray, UV-VIS spectroscopy, X-ray diffraction (XRD), and fourier transform infrared spectrophotometer (FTIR) analyses of these nanoparticles were performed. In addition, the antimicrobial effects of these synthesized nanoparticles were determined using the disk diffusion method. The nanoparticles obtained from Nasturtium officinale were effective on Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa), Gram-positive bacteria (Staphylococcus aureus, Streptococcus pyogenes), and fungi (Candida albicans). In particular, AgNPs with broad-spectrum antimicrobial activity were obtained from the watercress. While ZnNPs showed inhibition effects of 49% on K. pneumoniae, 51% on S. aureus, and 62% on C. albicans, AgNPs showed inhibition effects of 93% on P. aeruginosa, 87% on S. aureus, 81% on E. coli, 80% on C. albicans, 72% on K. pneumoniae, and 56% on S. pyogenes. The results show that Nasturtium officinale can be used effectively in the production of new biotechnological products, particularly ones with antimicrobial properties.

Description

Keywords

Antimicrobial activity, Biotechnological products, Green synthesis, Medicinal plants, Metallic nanoparticles

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Q3

Source

Journal of Agricultural Sciences

Volume

29

Issue

3

Start Page

788

End Page

799