MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Hybrid 2d Gaussian Filter and Deep Learning Approach With Visualization of Class Activation for Automatic Lung and Colon Cancer Diagnosis

dc.authorid Irmak, Emrah/0000-0002-7981-2305
dc.authorid TURK, Omer/0000-0002-0060-1880
dc.authorid Yilmaz, Musa/0000-0002-2306-6008
dc.authorscopusid 57195215516
dc.authorscopusid 55293901700
dc.authorscopusid 57189701251
dc.authorscopusid 55874217200
dc.authorscopusid 58663899200
dc.authorwosid Irmak, Emrah/ABI-4176-2020
dc.authorwosid türk, ömer/AAI-6751-2020
dc.authorwosid YILMAZ, Musa/ABB-2528-2020
dc.contributor.author Turk, Omer
dc.contributor.author Acar, Emrullah
dc.contributor.author Irmak, Emrah
dc.contributor.author Yilmaz, Musa
dc.contributor.author Bakis, Enes
dc.contributor.author Türk, Ömer
dc.contributor.other Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
dc.date.accessioned 2025-02-15T19:36:55Z
dc.date.available 2025-02-15T19:36:55Z
dc.date.issued 2024
dc.department Artuklu University en_US
dc.department-temp [Turk, Omer] Mardin Artuklu Univ, Fac Engn & Architecture, Dept Comp Engn, Mardin, Turkiye; [Acar, Emrullah; Yilmaz, Musa] Batman Univ, Fac Engn & Architecture, Dept Elect & Elect Engn, Batman, Turkiye; [Irmak, Emrah] Alanya Alaaddin Keykubat Univ, Fac Engn, Dept Elect & Elect Engn, Antalya, Turkiye; [Yilmaz, Musa] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, Riverside, CA 92521 USA; [Bakis, Enes] Piri Reis Univ, Fac Engn, Dept Elect & Elect Engn, Istanbul, Turkiye en_US
dc.description Irmak, Emrah/0000-0002-7981-2305; TURK, Omer/0000-0002-0060-1880; Yilmaz, Musa/0000-0002-2306-6008 en_US
dc.description.abstract Cancer is a significant public health issue due to its high prevalence and lethality, particularly lung and colon cancers, which account for over a quarter of all cancer cases. This study aims to enhance the detection rate of lung and colon cancer by designing an automated diagnosis system. The system focuses on early detection through image pre-processing with a 2D Gaussian filter, while maintaining simplicity to minimize computational requirements and runtime. The study employs three Convolutional Neural Network (CNN) models-MobileNet, VGG16, and ResNet50-to diagnose five types of cancer: Colon Adenocarcinoma, Benign Colonic Tissue, Lung Adenocarcinoma, Benign Lung Tissue, and Lung Squamous Cell Carcinoma. A large dataset comprising 25 000 histopathological images is utilized. Additionally, the research addresses the need for safety levels in the model by using Class Activation Mapping (CAM) for explanatory purposes. Experimental results indicate that the proposed system achieves a high diagnostic accuracy of 99.38% for lung and colon cancers. This high performance underscores the effectiveness of the automated system in detecting these types of cancer. The findings from this study support the potential for early diagnosis of lung and colon cancers, which can facilitate timely therapeutic interventions and improve patient outcomes. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1177/15330338241301297
dc.identifier.issn 1533-0346
dc.identifier.issn 1533-0338
dc.identifier.pmid 39632623
dc.identifier.scopus 2-s2.0-85211634149
dc.identifier.scopusquality Q3
dc.identifier.uri https://doi.org/10.1177/15330338241301297
dc.identifier.uri https://hdl.handle.net/20.500.12514/6127
dc.identifier.volume 23 en_US
dc.identifier.wos WOS:001370086200001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Sage Publications inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 0
dc.subject Lung And Colon Cancer en_US
dc.subject Gaussian (Blur) Filter en_US
dc.subject Resnet50 en_US
dc.subject Deep Learning en_US
dc.title A Hybrid 2d Gaussian Filter and Deep Learning Approach With Visualization of Class Activation for Automatic Lung and Colon Cancer Diagnosis en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication d7a05184-8649-4d7a-9ede-47416afad38e
relation.isAuthorOfPublication.latestForDiscovery d7a05184-8649-4d7a-9ede-47416afad38e
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files