MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Hybrid 2d Gaussian Filter and Deep Learning Approach With Visualization of Class Activation for Automatic Lung and Colon Cancer Diagnosis

dc.authoridIrmak, Emrah/0000-0002-7981-2305
dc.authoridTURK, Omer/0000-0002-0060-1880
dc.authoridYilmaz, Musa/0000-0002-2306-6008
dc.authorscopusid57195215516
dc.authorscopusid55293901700
dc.authorscopusid57189701251
dc.authorscopusid55874217200
dc.authorscopusid58663899200
dc.authorwosidIrmak, Emrah/ABI-4176-2020
dc.authorwosidtürk, ömer/AAI-6751-2020
dc.authorwosidYILMAZ, Musa/ABB-2528-2020
dc.contributor.authorTurk, Omer
dc.contributor.authorAcar, Emrullah
dc.contributor.authorIrmak, Emrah
dc.contributor.authorYilmaz, Musa
dc.contributor.authorBakis, Enes
dc.contributor.authorTürk, Ömer
dc.date.accessioned2025-02-15T19:36:55Z
dc.date.available2025-02-15T19:36:55Z
dc.date.issued2024
dc.departmentArtuklu Universityen_US
dc.department-temp[Turk, Omer] Mardin Artuklu Univ, Fac Engn & Architecture, Dept Comp Engn, Mardin, Turkiye; [Acar, Emrullah; Yilmaz, Musa] Batman Univ, Fac Engn & Architecture, Dept Elect & Elect Engn, Batman, Turkiye; [Irmak, Emrah] Alanya Alaaddin Keykubat Univ, Fac Engn, Dept Elect & Elect Engn, Antalya, Turkiye; [Yilmaz, Musa] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, Riverside, CA 92521 USA; [Bakis, Enes] Piri Reis Univ, Fac Engn, Dept Elect & Elect Engn, Istanbul, Turkiyeen_US
dc.descriptionIrmak, Emrah/0000-0002-7981-2305; TURK, Omer/0000-0002-0060-1880; Yilmaz, Musa/0000-0002-2306-6008en_US
dc.description.abstractCancer is a significant public health issue due to its high prevalence and lethality, particularly lung and colon cancers, which account for over a quarter of all cancer cases. This study aims to enhance the detection rate of lung and colon cancer by designing an automated diagnosis system. The system focuses on early detection through image pre-processing with a 2D Gaussian filter, while maintaining simplicity to minimize computational requirements and runtime. The study employs three Convolutional Neural Network (CNN) models-MobileNet, VGG16, and ResNet50-to diagnose five types of cancer: Colon Adenocarcinoma, Benign Colonic Tissue, Lung Adenocarcinoma, Benign Lung Tissue, and Lung Squamous Cell Carcinoma. A large dataset comprising 25 000 histopathological images is utilized. Additionally, the research addresses the need for safety levels in the model by using Class Activation Mapping (CAM) for explanatory purposes. Experimental results indicate that the proposed system achieves a high diagnostic accuracy of 99.38% for lung and colon cancers. This high performance underscores the effectiveness of the automated system in detecting these types of cancer. The findings from this study support the potential for early diagnosis of lung and colon cancers, which can facilitate timely therapeutic interventions and improve patient outcomes.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationcount0
dc.identifier.doi10.1177/15330338241301297
dc.identifier.issn1533-0346
dc.identifier.issn1533-0338
dc.identifier.pmid39632623
dc.identifier.scopus2-s2.0-85211634149
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.1177/15330338241301297
dc.identifier.urihttps://hdl.handle.net/20.500.12514/6127
dc.identifier.volume23en_US
dc.identifier.wosWOS:001370086200001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherSage Publications incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLung And Colon Canceren_US
dc.subjectGaussian (Blur) Filteren_US
dc.subjectResnet50en_US
dc.subjectDeep Learningen_US
dc.titleA Hybrid 2d Gaussian Filter and Deep Learning Approach With Visualization of Class Activation for Automatic Lung and Colon Cancer Diagnosisen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationd7a05184-8649-4d7a-9ede-47416afad38e
relation.isAuthorOfPublication.latestForDiscoveryd7a05184-8649-4d7a-9ede-47416afad38e

Files