MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Mathematical model and a variable neighborhood search algorithm for mixed-model robotic two-sided assembly line balancing problems with sequence-dependent setup times

dc.authorid0000-0003-1886-3421
dc.contributor.authorAslan, Şehmus
dc.date.accessioned2022-04-19T06:06:24Z
dc.date.available2022-04-19T06:06:24Z
dc.date.issued2022
dc.departmentMAÜ, Fakülteler, İktisadi ve İdari Bilimler Fakültesi, İşletme Bölümüen_US
dc.description.abstractHuman labor is generally being replaced with robots for high automation, increased fexibility, and reduced costs in modern industry. Few studies consider the sequencedependent setup times in the assembly line balancing literature. However, it should not be overlooked in a real-life setting. This article presents a new mathematical model and variable neighborhood search (VNS) algorithm for mixed-model robotic two-sided assembly line balancing, with the aim of minimizing the cycle time by considering the sequence-dependent setup times. The efectiveness of the proposed VNS is tested with a set of test problems from the literature. The computational results and statistical analysis indicate that the proposed method yields promising results.en_US
dc.description.citationAslan, Ş. (2022). Mathematical model and a variable neighborhood search algorithm for mixed-model robotic two-sided assembly line balancing problems with sequence-dependent setup times. Optim Eng. https://doi.org/10.1007/s11081-022-09718-3en_US
dc.description.provenanceSubmitted by abdulsamet akan (abdulsametakan@artuklu.edu.tr) on 2022-04-19T06:06:00Z No. of bitstreams: 1 Aslan2022_Article_MathematicalModelAndAVariableN.pdf: 2163207 bytes, checksum: 7ddc46de14b4ed223c3aa592a5a02984 (MD5)en
dc.description.provenanceApproved for entry into archive by abdulsamet akan (abdulsametakan@artuklu.edu.tr) on 2022-04-19T06:06:24Z (GMT) No. of bitstreams: 1 Aslan2022_Article_MathematicalModelAndAVariableN.pdf: 2163207 bytes, checksum: 7ddc46de14b4ed223c3aa592a5a02984 (MD5)en
dc.description.provenanceMade available in DSpace on 2022-04-19T06:06:24Z (GMT). No. of bitstreams: 1 Aslan2022_Article_MathematicalModelAndAVariableN.pdf: 2163207 bytes, checksum: 7ddc46de14b4ed223c3aa592a5a02984 (MD5) Previous issue date: 2022en
dc.identifier.doi10.1007/s11081-022-09718-3
dc.identifier.scopus2-s2.0-85127541425
dc.identifier.urihttps://doi.org/10.1007/s11081-022-09718-3
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85127541425&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=0c3d3375bf39fb1b54ba6fd515b54892&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1
dc.identifier.urihttps://hdl.handle.net/20.500.12514/3064
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:000779764600001?AlertId=d383397b-4355-449e-9419-70f9e0e77c15&SID=EUW1ED0D20h9VmzTnXJRFru4mp4Xr
dc.identifier.wosWOS:000779764600001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringerLinken_US
dc.relation.ispartofOptimization and Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMixed-model · Robotic · Two-sided assembly line balancing · Sequencedependent setup times · Variable neighborhood searchen_US
dc.titleMathematical model and a variable neighborhood search algorithm for mixed-model robotic two-sided assembly line balancing problems with sequence-dependent setup timesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Aslan2022_Article_MathematicalModelAndAVariableN.pdf
Size:
2.06 MB
Format:
Adobe Portable Document Format
Description:
Full Text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: