Hybrid Deep Learning Model for Maize Leaf Disease Classification With Explainable AI

dc.contributor.author Aslan, Emrah
dc.contributor.author Alpsalaz, Feyyaz
dc.contributor.author Aslan, Emrah
dc.contributor.author Uzel, Hasan
dc.contributor.other 08.01. Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
dc.contributor.other 08. Faculty of Engineering and Architecture / Mühendislik Mimarlık Fakültesi
dc.contributor.other 01. Mardin Artuklu University / Mardin Artuklu Üniversitesi
dc.date.accessioned 2025-07-15T19:13:31Z
dc.date.available 2025-07-15T19:13:31Z
dc.date.issued 2025
dc.description Uzel, Hasan/0000-0002-8238-2588 en_US
dc.description.abstract This study presents a hybrid learning model that integrates MobileNetV2 and Vision Transformer (ViT) with a stacking model to classify maize leaf diseases, addressing the critical need for early detection to improve agricultural productivity and sustainability. Utilising the 'Corn or Maize Leaf Disease Dataset' from Kaggle, comprising 4,062 high-resolution images across five classes (Common Rust, Grey Leaf Spot, Healthy, Northern Leaf Blight, Not Maize Leaf), the model achieves an impressive accuracy of 96.73%. Transfer learning from ImageNet, coupled with data augmentation (rotation, flipping, scaling, brightness adjustment), enhances generalisation, while a 20% dropout rate mitigates overfitting. The key advantage of the hybrid model lies in its ability to combine the strengths of MobileNetV2's localised feature extraction and ViT's global context understanding, enhanced by the stacking model's ability to reduce the weaknesses of either model. Explainable AI techniques, including SHapley Additive exPlanations (SHAP), Local Interpretable Model-agnostic Explanations (LIME), and Grad-CAM, provide transparent insights into model decisions, fostering trust among agricultural stakeholders. Comparative analysis demonstrates the model's superiority over prior works, with F1-scores ranging from 0.9276 to 1.0000. Despite minor misclassifications due to visual similarities, the model offers a robust, interpretable solution for precision agriculture. en_US
dc.identifier.doi 10.1080/01140671.2025.2519570
dc.identifier.issn 0114-0671
dc.identifier.issn 1175-8783
dc.identifier.scopus 2-s2.0-105008428540
dc.identifier.uri https://doi.org/10.1080/01140671.2025.2519570
dc.identifier.uri https://hdl.handle.net/20.500.12514/9059
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Maize Leaf Disease en_US
dc.subject Hybrid Deep Learning en_US
dc.subject Mobilenetv2 en_US
dc.subject Vision Transformer en_US
dc.subject Explainable AI en_US
dc.title Hybrid Deep Learning Model for Maize Leaf Disease Classification With Explainable AI en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Uzel, Hasan/0000-0002-8238-2588
gdc.author.scopusid 57200142934
gdc.author.scopusid 59221704100
gdc.author.scopusid 58083655800
gdc.author.scopusid 58826043600
gdc.author.wosid Uzel, Hasan/Hik-2925-2022
gdc.author.wosid Alpsalaz, Feyyaz/Ldg-5760-2024
gdc.author.wosid Ozupak, Yıldırm/R-9877-2018
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp [Ozupak, Yildirim] Dicle Univ, Dept Elect & Energy, Diyarbakir, Turkiye; [Alpsalaz, Feyyaz; Uzel, Hasan] Yozgat Bozok Univ, Dept Elect & Energy, Yozgat, Turkiye; [Aslan, Emrah] Mardin Artuklu Univ, Fac Engn & Architecture, Dept Comp Engn, Mardin, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.wos WOS:001511173500001
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isAuthorOfPublication ea96819c-4e93-4dc4-a97c-2ca74bd3f34d
relation.isAuthorOfPublication.latestForDiscovery ea96819c-4e93-4dc4-a97c-2ca74bd3f34d
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication b4a7a54e-df38-44d5-9f03-ab3ce38ad8a8
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files