Design, Synthesis, Characterization, and Surface Texture Investigation of a Novel Nickel-Supported Magnetic Nanocatalyst (Hierarchical Layered) for Efficient Hydrogen Production (Hydrolysis/Alcoholysis)
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
In this study, Fe3O4@TROMETHAMINE-Ni magnetic nanocatalysts (MNCs) were synthesized for the first time. Various characterization techniques, including fourier transform infrared spectroscopy (FTIR), x-ray diffractometer (XRD), scanning electron microscopy (SEM), pulsed sample magnetometer, electron paramagnetic resonance (EPR), and surface area measurement (BET), have been used to elucidate the structure and morphology of Fe3O4@TROMETHAMINE-Ni MNCs. The average particle size, surface area, and saturation magnetization value of Fe3O4@TROMETHAMINE-Ni MNCs have been measured as 7.97 nm, 60.11 m2/g, and 43.49 emu/g, respectively. The Fe3O4@TROMETHAMINE-Ni MNCs were determined to be superparamagnetic. EPR analysis was used to calculate the g-factor values before and after sodium borohydride (NaBH4) hydrolysis of Fe3O4@TROMETHAMINE-Ni MNCs, which were found to be 4.81 and 4.95, respectively. This value indicates that the electrons surrounding the oxygen vacancies formed on the catalyst surface can enhance transport efficiency and improve catalytic activity. It was optimized by many parameters in hydrogen production with hydrolysis/alcoholysis of NaBH4 using Fe3O4@TROMETHAMINE-Ni MNCs. For hydrogen production by NaBH4 hydrolysis of Fe3O4@TROMETHAMINE-Ni MNCs, it has been carried out using 265 mM NaBH4, 75 mg Fe3O4@TROMETHAMINE-Ni MNCs, and 20 mL of pure water/methanol at room temperature. The amount of hydrogen produced under optimum conditions has been measured as 1533 mL/min & sdot;gcat. It was determined that the reusability performance of Fe3O4@TROMETHAMINE-Ni MNCs showed a minor decrease of 8.42 % compared to the initial usage after the sixth cycle. These results show that Fe3O4@TROMETHAMINE-Ni MNCs are a promising material with advantages such as high efficiency in hydrogen production and the ability to be used repeatedly.
Description
Keywords
Characterization and Optimization, Chemical Hydrogen Storage, Hydrogen Generation, Hydrolysis-Alcoholysis, Magnetic Nanocatalysts
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q1
Scopus Q
Q1

OpenCitations Citation Count
N/A
Source
Surfaces and Interfaces
Volume
72
Issue
Start Page
107113
End Page
PlumX Metrics
Citations
Scopus : 2
Captures
Mendeley Readers : 1
SCOPUS™ Citations
2
checked on Feb 01, 2026
Page Views
2
checked on Feb 01, 2026
Google Scholar™

OpenAlex FWCI
3.17091429
Sustainable Development Goals
7
AFFORDABLE AND CLEAN ENERGY

8
DECENT WORK AND ECONOMIC GROWTH

17
PARTNERSHIPS FOR THE GOALS


