MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Performance Improvement of Genetic Algorithm Based Exam Seating Solution by Parameter Optimization

dc.authorid0000-0002-2635-0661
dc.contributor.authorAğalday, Fatih
dc.contributor.authorNizam, Ali
dc.date.accessioned2023-01-27T08:19:11Z
dc.date.available2023-01-27T08:19:11Z
dc.date.issued2022
dc.departmentMAÜ, Meslek Yüksekokulları, Mardin Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümüen_US
dc.description.abstractExam seat allocation has become a complex problem, with an increasing number of students, subjects, exams, departments, and rooms in higher education institutions. The requirements and constraints of this problem demonstrate characteristics similar to extensively researched exam timetabling problems. They plan for a limited capacity effectively and efficiently. Additionally, exam seating requires a seating arrangement to reduce the number of cheating incidents. In the literature, several genetic algorithm-based methods have been recommended to prevent students, who are close friends, from sitting close during the exams while providing the best exam session arrangement. We improved the performance of the genetic algorithm using parameter optimization and a new elitism method to increase the saturation rate and accuracy. The algorithm was tested on a real-world dataset and demonstrated high potential for the realization of a high-quality seating arrangement compatible with the requirements of educational institutions.en_US
dc.description.citationAğalday, F. & Nizam, A. (2022). Performance Improvement of Genetic Algorithm Based Exam Seating Solution by Parameter Optimization . Journal of Innovative Science and Engineering , 6 (2) , 220-232 . DOI: 10.38088/jise.1006070en_US
dc.description.provenanceSubmitted by abdulsamet akan (abdulsametakan@artuklu.edu.tr) on 2023-01-27T08:18:53Z No. of bitstreams: 1 document (31).pdf: 1217114 bytes, checksum: ede6105fcf2b1c148250c72c2d5d18d6 (MD5)en
dc.description.provenanceApproved for entry into archive by abdulsamet akan (abdulsametakan@artuklu.edu.tr) on 2023-01-27T08:19:11Z (GMT) No. of bitstreams: 1 document (31).pdf: 1217114 bytes, checksum: ede6105fcf2b1c148250c72c2d5d18d6 (MD5)en
dc.description.provenanceMade available in DSpace on 2023-01-27T08:19:11Z (GMT). No. of bitstreams: 1 document (31).pdf: 1217114 bytes, checksum: ede6105fcf2b1c148250c72c2d5d18d6 (MD5) Previous issue date: 2022en
dc.identifier.doi10.38088/jise.1006070
dc.identifier.endpage232en_US
dc.identifier.issue2en_US
dc.identifier.startpage220en_US
dc.identifier.trdizinid1146057
dc.identifier.urihttps://doi.org/10.38088/jise.1006070
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1146057/performance-improvement-of-genetic-algorithm-based-exam-seating-solution-by-parameter-optimization
dc.identifier.urihttps://hdl.handle.net/20.500.12514/3413
dc.identifier.volume6en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isoenen_US
dc.publisherJournal of Innovative Science and Engineering (JISE)en_US
dc.relation.ispartofJournal of Innovative Science and Engineering (JISE)en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectData science applications in education, genetic algorithm, multi-parameter optimizationen_US
dc.titlePerformance Improvement of Genetic Algorithm Based Exam Seating Solution by Parameter Optimizationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
document (31).pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format
Description:
Full Text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: