MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Fabrication and characterization of Fe3O4/perlite, Fe3O4/perlite@SiO2, and Fe3O4/perlite@SiO2@sulfanilamide magnetic nanomaterials

Loading...
Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

SpringerLink

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Abstract In this study, the fabrication of perlite-supported Fe3O4 (Fe3O4/perlite), SiO2-coated Fe3O4/perlite (Fe3O4/perlite@SiO2), and sulfanilamide-modified Fe3O4/perlite@SiO2 (Fe3O4/perlite@SiO2@sulfanilamide) magnetic nanomaterials and their characterization by various spectroscopic techniques were presented. For this purpose, first, Fe3O4/perlite was fabricated via the co-precipitation method. Then, Fe3O4/perlite@SiO2 and Fe3O4/perlite@SiO2@sulfanilamide nanomaterials were fabricated using the sol–gel method. The structural properties of the fabricated nanomaterials were characterized using Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), SEM-energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis-differential thermal analysis, and X-ray diffraction (XRD) analyses. The SEM, SEM–EDX, FTIR, and XRD analyses revealed that the fabrication and surface coatings of the Fe3O4/perlite, Fe3O4/perlite@SiO2, and Fe3O4/perlite@SiO2@sulfanilamide were successfully performed. It was concluded that the Fe3O4/perlite, Fe3O4/perlite@SiO2, and Fe3O4/perlite@SiO2@sulfanilamide showed a type IV-H3 hysteresis loop according to the International Union of Pure and Applied Chemistry classification. According to the BET analysis, it was found that the specific surface areas of the Fe3O4/perlite, Fe3O4/perlite@SiO2, and Fe3O4/perlite@SiO2@sulfanilamide were 8.09, 12.71, and 5.89 m2/g, respectively. The average pore radius of the Fe3O4/perlite, Fe3O4/perlite@SiO2, and Fe3O4/perlite@SiO2@sulfanilamide were 9.68, 7.91, and 34.69 nm, respectively, using the Barrett-Joyner-Halenda method. Moreover, the half-pore widths of the Fe3O4/perlite, Fe3O4/perlite@SiO2, and Fe3O4/perlite@SiO2@sulfanilamide were 2.27, 1.58, and 17.99 nm, respectively, using the density functional theory method. Furthermore, in light of characterization findings, the Fe3O4/perlite, Fe3O4/perlite@SiO2, and Fe3O4/perlite@SiO2@sulfanilamide were in crystalline cubic spinel form, and they had mechanical and thermal stability and a mesoporous structure. Within the framework of the results, these developed nanomaterials, which have potential in many applications, such as sustainable technologies and environmental safety technologies, were brought to the attention of related fields.

Description

Keywords

Characterization; Fe3O4/perlite; Fe3O4/perlite@SiO2; Fe3O4/perlite@SiO2@sulfanilamide; Magnetic nanomaterials; Nanotechnology

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Source

Applied Physics A

Volume

128

Issue

3

Start Page

1

End Page

14