MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Prediction of Aspergillus parasiticus inhibition and aflatoxin mitigation in red pepper flakes treated by pulsed electric field treatment using machine learning and neural networks

dc.contributor.author Akdemir Evrendilek, Gulsun
dc.contributor.author Bulut, Nurullah
dc.contributor.author Atmaca, Bahar
dc.contributor.author Uzuner, Sibel
dc.date.accessioned 2023-01-11T07:17:09Z
dc.date.available 2023-01-11T07:17:09Z
dc.date.issued 2022
dc.department MAÜ, Rektörlüğe Bağlı Bölümler, Uygulama - Araştırma Merkezleri ve Koordinatörlükler en_US
dc.description.abstract Presence of aflatoxins in agricultural products is a worldwide problem. Because of their high heat stability and resistance to most of the food processing technologies, aflatoxin degradation is still a big challenge. Thus, efficacy of pulsed electric fields (PEF) by energies ranging from 0.97 to 17.28 J was tested to determine changes in quality properties in red pepper flakes, mitigation of aflatoxins, inactivation of aflatoxin producing Aspergillus parasiticus, reduction in aflatoxin mutagenity, and modelling of A. parasiticus inactivation in addition to aflatoxin mitigation. Maximum inactivation rate of 64.37 % with 17.28 J was encountered on the mean initial A. parasiticus count. A 99.88, 99.47, 97.75, and 99.58 % reductions were obtained on the mean initial AfG1, AfG2, AfB1, and AfB2 concentrations. PEF treated samples by 0.97, 1.36, 5.76, and 17.28 J at 1 μg/plate, 0.97, 1.92, 7.78, 10.80 J at 10 μg/plate, and 0.97, 1.92, 2.92, 4.08, 5.76, 4.86, 6.80, 9.60, 10.80, and 10.89 J at 100 μg/plate were not mutagenic. Modelling with gradient boosting regression tree (GBRT), random forest regression (RFR), and artificial neural network (ANN) provided the lowest RMSE and highest R2 value for GBRT model for the predicted inactivation of A. parasiticus, whereas ANN model provided the lowest RMSE and highest R2 for predicted mitigation of AfG1, AfB1, and AfB2. PEF treatment possess a viable alternative for aflatoxin degradation with reduced mutagenity and without adverse effect on quality properties of red pepper flakes. en_US
dc.description.citation Evrendilek, G. A., Bulut, N., Atmaca, B., & Uzuner, S. (2022). Prediction of Aspergillus parasiticus inhibition and aflatoxin mitigation in red pepper flakes treated by pulsed electric field treatment using machine learning and neural networks. Food Research International, 162, 111954. en_US
dc.identifier.doi 10.1016/j.foodres.2022.111954
dc.identifier.pmid 36461206
dc.identifier.scopus 2-s2.0-85138450121
dc.identifier.uri https://doi.org/10.1016/j.foodres.2022.111954
dc.identifier.uri https://hdl.handle.net/20.500.12514/3305
dc.identifier.volume 162 en_US
dc.identifier.wos WOS:000870023800005
dc.identifier.wosquality Q1
dc.indekslendigikaynak Web of Science en_US
dc.indekslendigikaynak Scopus en_US
dc.indekslendigikaynak PubMed en_US
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Food Research International en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 14
dc.subject Pulsed electric fields en_US
dc.title Prediction of Aspergillus parasiticus inhibition and aflatoxin mitigation in red pepper flakes treated by pulsed electric field treatment using machine learning and neural networks en_US
dc.type Article en_US
dc.wos.citedbyCount 12
dspace.entity.type Publication

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0963996922010122-main.pdf
Size:
1.5 MB
Format:
Adobe Portable Document Format
Description:
Full Text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: