MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The Deep Learning Method Differentiates Patients With Bipolar Disorder From Controls With High Accuracy Using Eeg Data

dc.authorid Uyulan, Caglar/0000-0002-6423-6720
dc.authorid Tarhan, Nevzat/0000-0002-6810-7096
dc.authorid Erguzel, Turker/0000-0001-8438-6542
dc.authorid Turk, Omer/0000-0002-0060-1880
dc.authorid Farhad, Shams/0000-0003-0591-2765
dc.authorwosid Erguzel, Turker/G-2774-2019
dc.authorwosid Uyulan, Caglar/Aha-7154-2022
dc.authorwosid Ciftci, Elvan/Kcj-8066-2024
dc.authorwosid Tarhan, Nevzat/Aib-8542-2022
dc.authorwosid Türk, Ömer/Aai-6751-2020
dc.authorwosid Farhad, Shams/Hhz-8838-2022
dc.contributor.author Metin, Baris
dc.contributor.author Uyulan, Caglar
dc.contributor.author Erguzel, Turker Tekin
dc.contributor.author Farhad, Shams
dc.contributor.author Cifci, Elvan
dc.contributor.author Turk, Omer
dc.contributor.author Tarhan, Nevzat
dc.contributor.author Türk, Ömer
dc.contributor.other Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
dc.date.accessioned 2025-02-15T19:38:56Z
dc.date.available 2025-02-15T19:38:56Z
dc.date.issued 2024
dc.department Artuklu University en_US
dc.department-temp [Metin, Baris] Uskudar Univ, Med Fac, Neurol Dept, Istanbul, Turkiye; [Uyulan, Caglar] Katip Celebi Univ, Dept Mech Engn, Izmir, Turkiye; [Erguzel, Turker Tekin] Uskudar Univ, Fac Engn & Nat Sci, Dept Software Engn, Istanbul, Turkiye; [Farhad, Shams] Uskudar Univ, Dept Neurosci, Istanbul, Turkiye; [Cifci, Elvan; Tarhan, Nevzat] Uskudar Univ, Dept Psychiat, Istanbul, Turkiye; [Turk, Omer] Mardin Artuklu Univ, Dept Comp Technol, Mardin, Turkiye en_US
dc.description.abstract Background: Bipolar disorder (BD) is a mental disorder characterized by depressive and manic or hypomanic episodes. The complexity in the diagnosis of Bipolar disorder (BD) due to its overlapping symptoms with other mood disorders prompted researchers and clinicians to seek new and advanced techniques for the precise detection of Bipolar disorder (BD). One of these methods is the use of advanced machine learning algorithms such as deep learning (DL). However, no study of BD has previously adopted DL techniques using EEG signals. Method: EEG signals of 169 BD patients and 45 controls were cleaned from the artifacts and processed using two different DL methods: a one-dimensional convolutional neural network (1D-CNN) combined with the long-short term memory (LSTM) and a two-dimensional convolutional neural network (2D-CNN). Additionally, Class Activation Maps (CAMs) acquired from the bipolar and control groups were used to obtain distinctive regions to specify a particular class in an image. Results: Group identifications were confirmed with 95.91% overall accuracy through the 2D-CNN method, demonstrating very high sensitivity and lower specificity. Also, the overall accuracy obtained from the 1D-CNN + LSTM method was 93%. We also found that F4, C3, F7, and F8 electrode activities produce predominant features to detect the bipolar group. Conclusion: To our knowledge, this study used EEG-based DL analysis for the first time in BD. Our results suggest that the raw EEG-based DL algorithm can successfully differentiate individuals with BD from controls. Class Activation Map (CAM) analysis suggests that prefrontal changes are predominant in EEG data of patients with BD. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 8
dc.identifier.doi 10.1177/15500594221137234
dc.identifier.endpage 175 en_US
dc.identifier.issn 1550-0594
dc.identifier.issn 2169-5202
dc.identifier.issue 2 en_US
dc.identifier.pmid 36341750
dc.identifier.scopus 2-s2.0-85141561747
dc.identifier.scopusquality Q2
dc.identifier.startpage 167 en_US
dc.identifier.uri https://doi.org/10.1177/15500594221137234
dc.identifier.volume 55 en_US
dc.identifier.wos WOS:000879563400001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Sage Publications inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 14
dc.subject Bipolar Disorder en_US
dc.subject Bd en_US
dc.subject Eeg en_US
dc.subject Deep Learning en_US
dc.subject Dl en_US
dc.subject Neural Network en_US
dc.subject Advanced Eeg-Based Bipolar Disorder Detection Technique en_US
dc.title The Deep Learning Method Differentiates Patients With Bipolar Disorder From Controls With High Accuracy Using Eeg Data en_US
dc.type Article en_US
dc.wos.citedbyCount 11
dspace.entity.type Publication
relation.isAuthorOfPublication d7a05184-8649-4d7a-9ede-47416afad38e
relation.isAuthorOfPublication.latestForDiscovery d7a05184-8649-4d7a-9ede-47416afad38e
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files