MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The Deep Learning Method Differentiates Patients With Bipolar Disorder From Controls With High Accuracy Using Eeg Data

dc.authoridUyulan, Caglar/0000-0002-6423-6720
dc.authoridTarhan, Nevzat/0000-0002-6810-7096
dc.authoridErguzel, Turker/0000-0001-8438-6542
dc.authoridTurk, Omer/0000-0002-0060-1880
dc.authoridFarhad, Shams/0000-0003-0591-2765
dc.authorwosidErguzel, Turker/G-2774-2019
dc.authorwosidUyulan, Caglar/Aha-7154-2022
dc.authorwosidCiftci, Elvan/Kcj-8066-2024
dc.authorwosidTarhan, Nevzat/Aib-8542-2022
dc.authorwosidTürk, Ömer/Aai-6751-2020
dc.authorwosidFarhad, Shams/Hhz-8838-2022
dc.contributor.authorMetin, Baris
dc.contributor.authorUyulan, Caglar
dc.contributor.authorErguzel, Turker Tekin
dc.contributor.authorFarhad, Shams
dc.contributor.authorCifci, Elvan
dc.contributor.authorTurk, Omer
dc.contributor.authorTarhan, Nevzat
dc.contributor.authorTürk, Ömer
dc.date.accessioned2025-02-15T19:38:56Z
dc.date.available2025-02-15T19:38:56Z
dc.date.issued2024
dc.departmentArtuklu Universityen_US
dc.department-temp[Metin, Baris] Uskudar Univ, Med Fac, Neurol Dept, Istanbul, Turkiye; [Uyulan, Caglar] Katip Celebi Univ, Dept Mech Engn, Izmir, Turkiye; [Erguzel, Turker Tekin] Uskudar Univ, Fac Engn & Nat Sci, Dept Software Engn, Istanbul, Turkiye; [Farhad, Shams] Uskudar Univ, Dept Neurosci, Istanbul, Turkiye; [Cifci, Elvan; Tarhan, Nevzat] Uskudar Univ, Dept Psychiat, Istanbul, Turkiye; [Turk, Omer] Mardin Artuklu Univ, Dept Comp Technol, Mardin, Turkiyeen_US
dc.description.abstractBackground: Bipolar disorder (BD) is a mental disorder characterized by depressive and manic or hypomanic episodes. The complexity in the diagnosis of Bipolar disorder (BD) due to its overlapping symptoms with other mood disorders prompted researchers and clinicians to seek new and advanced techniques for the precise detection of Bipolar disorder (BD). One of these methods is the use of advanced machine learning algorithms such as deep learning (DL). However, no study of BD has previously adopted DL techniques using EEG signals. Method: EEG signals of 169 BD patients and 45 controls were cleaned from the artifacts and processed using two different DL methods: a one-dimensional convolutional neural network (1D-CNN) combined with the long-short term memory (LSTM) and a two-dimensional convolutional neural network (2D-CNN). Additionally, Class Activation Maps (CAMs) acquired from the bipolar and control groups were used to obtain distinctive regions to specify a particular class in an image. Results: Group identifications were confirmed with 95.91% overall accuracy through the 2D-CNN method, demonstrating very high sensitivity and lower specificity. Also, the overall accuracy obtained from the 1D-CNN + LSTM method was 93%. We also found that F4, C3, F7, and F8 electrode activities produce predominant features to detect the bipolar group. Conclusion: To our knowledge, this study used EEG-based DL analysis for the first time in BD. Our results suggest that the raw EEG-based DL algorithm can successfully differentiate individuals with BD from controls. Class Activation Map (CAM) analysis suggests that prefrontal changes are predominant in EEG data of patients with BD.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationcount8
dc.identifier.doi10.1177/15500594221137234
dc.identifier.endpage175en_US
dc.identifier.issn1550-0594
dc.identifier.issn2169-5202
dc.identifier.issue2en_US
dc.identifier.pmid36341750
dc.identifier.scopus2-s2.0-85141561747
dc.identifier.scopusqualityQ2
dc.identifier.startpage167en_US
dc.identifier.urihttps://doi.org/10.1177/15500594221137234
dc.identifier.volume55en_US
dc.identifier.wosWOS:000879563400001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherSage Publications incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBipolar Disorderen_US
dc.subjectBden_US
dc.subjectEegen_US
dc.subjectDeep Learningen_US
dc.subjectDlen_US
dc.subjectNeural Networken_US
dc.subjectAdvanced Eeg-Based Bipolar Disorder Detection Techniqueen_US
dc.titleThe Deep Learning Method Differentiates Patients With Bipolar Disorder From Controls With High Accuracy Using Eeg Dataen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationd7a05184-8649-4d7a-9ede-47416afad38e
relation.isAuthorOfPublication.latestForDiscoveryd7a05184-8649-4d7a-9ede-47416afad38e

Files