MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Classification of electroencephalogram records related to cursor movements with a hybrid method based on deep learning

dc.authorid 0000-0002-0060-1880
dc.contributor.author Türk, Ömer
dc.contributor.author Türk, Ömer
dc.contributor.other Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
dc.date.accessioned 2021-08-23T09:00:05Z
dc.date.available 2021-08-23T09:00:05Z
dc.date.issued 2021
dc.department MAÜ, Meslek Yüksekokulları, Mardin Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümü en_US
dc.description.abstract In brain computer interface (BCI), many transformation methods are used whenprocessing electroencephalogram (EEG) signals. Thus, the EEG can be represen-ted in different domains. However, designing an EEG-based BCI system withoutany transformation technique is a challenge. For this purpose, in this study, aBCI model is proposed without any transformation. The classification of cursordown and cursor up movements using the EEG signals received from the brain isaimed at in the proposed model. The EEG patterns were classified using twomethods. Firstly, EEG signals were classified by classic convolutional neural net-work (CNN). Secondly, proposed hybrid structure obtained the EEG features,which were classified by k-NN and SVM, using CNN. Classification with CNNarchitecture gave a result of 68.15% while the hybrid method using k-NN andSVM classifiers yielded 97.55% and 97.61% respectively. The hybrid proposedmethod were more successful than the studies in the literature. en_US
dc.description.citation Türk, Ö. (2021). Classification of electroencephalogram records related to cursor movements with a hybrid method based on deep learning INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY p. 1-12. en_US
dc.identifier.doi 10.1002/ima.22643
dc.identifier.issn 0899-9457eISSN1098-1098
dc.identifier.scopus 2-s2.0-85112602678
dc.identifier.uri https://www.webofscience.com/wos/woscc/full-record/WOS:000683053400001?AlertId=d383397b-4355-449e-9419-70f9e0e77c15&SID=D1lBdBjpt2OvCmqadyu
dc.identifier.uri https://www.scopus.com/record/display.uri?eid=2-s2.0-85112602678&origin=resultslist&sort=plf-f&src=s&sid=fc97de04c654bea02bb580471cf2925e&sot=b&sdt=b&sl=22&s=DOI%2810.1002%2fima.22643%29&relpos=0&citeCnt=0&searchTerm=
dc.identifier.uri https://doi.org/10.1002/ima.22643
dc.identifier.uri https://hdl.handle.net/20.500.12514/2810
dc.identifier.wos WOS:000683053400001
dc.identifier.wosquality Q3
dc.indekslendigikaynak Web of Science en_US
dc.indekslendigikaynak Scopus en_US
dc.language.iso en en_US
dc.publisher Wiley Online Library en_US
dc.relation.ispartof INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject classification, CNN, cursor movement, k-NN, raw EEG, SVM en_US
dc.title Classification of electroencephalogram records related to cursor movements with a hybrid method based on deep learning en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication d7a05184-8649-4d7a-9ede-47416afad38e
relation.isAuthorOfPublication.latestForDiscovery d7a05184-8649-4d7a-9ede-47416afad38e
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ima.22643.pdf
Size:
2.68 MB
Format:
Adobe Portable Document Format
Description:
Full text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: