MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Classification of electroencephalogram records related to cursor movements with a hybrid method based on deep learning

dc.authorid0000-0002-0060-1880
dc.contributor.authorTürk, Ömer
dc.contributor.authorTürk, Ömer
dc.date.accessioned2021-08-23T09:00:05Z
dc.date.available2021-08-23T09:00:05Z
dc.date.issued2021
dc.departmentMAÜ, Meslek Yüksekokulları, Mardin Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümüen_US
dc.description.abstractIn brain computer interface (BCI), many transformation methods are used whenprocessing electroencephalogram (EEG) signals. Thus, the EEG can be represen-ted in different domains. However, designing an EEG-based BCI system withoutany transformation technique is a challenge. For this purpose, in this study, aBCI model is proposed without any transformation. The classification of cursordown and cursor up movements using the EEG signals received from the brain isaimed at in the proposed model. The EEG patterns were classified using twomethods. Firstly, EEG signals were classified by classic convolutional neural net-work (CNN). Secondly, proposed hybrid structure obtained the EEG features,which were classified by k-NN and SVM, using CNN. Classification with CNNarchitecture gave a result of 68.15% while the hybrid method using k-NN andSVM classifiers yielded 97.55% and 97.61% respectively. The hybrid proposedmethod were more successful than the studies in the literature.en_US
dc.description.citationTürk, Ö. (2021). Classification of electroencephalogram records related to cursor movements with a hybrid method based on deep learning INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY p. 1-12.en_US
dc.identifier.doi10.1002/ima.22643
dc.identifier.issn0899-9457eISSN1098-1098
dc.identifier.scopus2-s2.0-85112602678
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:000683053400001?AlertId=d383397b-4355-449e-9419-70f9e0e77c15&SID=D1lBdBjpt2OvCmqadyu
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85112602678&origin=resultslist&sort=plf-f&src=s&sid=fc97de04c654bea02bb580471cf2925e&sot=b&sdt=b&sl=22&s=DOI%2810.1002%2fima.22643%29&relpos=0&citeCnt=0&searchTerm=
dc.identifier.urihttps://doi.org/10.1002/ima.22643
dc.identifier.urihttps://hdl.handle.net/20.500.12514/2810
dc.identifier.wosWOS:000683053400001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherWiley Online Libraryen_US
dc.relation.ispartofINTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGYen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectclassification, CNN, cursor movement, k-NN, raw EEG, SVMen_US
dc.titleClassification of electroencephalogram records related to cursor movements with a hybrid method based on deep learningen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationd7a05184-8649-4d7a-9ede-47416afad38e
relation.isAuthorOfPublication.latestForDiscoveryd7a05184-8649-4d7a-9ede-47416afad38e

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ima.22643.pdf
Size:
2.68 MB
Format:
Adobe Portable Document Format
Description:
Full text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: