Classification of electroencephalogram records related to cursor movements with a hybrid method based on deep learning
dc.authorid | 0000-0002-0060-1880 | |
dc.contributor.author | Türk, Ömer | |
dc.contributor.author | Türk, Ömer | |
dc.date.accessioned | 2021-08-23T09:00:05Z | |
dc.date.available | 2021-08-23T09:00:05Z | |
dc.date.issued | 2021 | |
dc.department | MAÜ, Meslek Yüksekokulları, Mardin Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümü | en_US |
dc.description.abstract | In brain computer interface (BCI), many transformation methods are used whenprocessing electroencephalogram (EEG) signals. Thus, the EEG can be represen-ted in different domains. However, designing an EEG-based BCI system withoutany transformation technique is a challenge. For this purpose, in this study, aBCI model is proposed without any transformation. The classification of cursordown and cursor up movements using the EEG signals received from the brain isaimed at in the proposed model. The EEG patterns were classified using twomethods. Firstly, EEG signals were classified by classic convolutional neural net-work (CNN). Secondly, proposed hybrid structure obtained the EEG features,which were classified by k-NN and SVM, using CNN. Classification with CNNarchitecture gave a result of 68.15% while the hybrid method using k-NN andSVM classifiers yielded 97.55% and 97.61% respectively. The hybrid proposedmethod were more successful than the studies in the literature. | en_US |
dc.description.citation | Türk, Ö. (2021). Classification of electroencephalogram records related to cursor movements with a hybrid method based on deep learning INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY p. 1-12. | en_US |
dc.identifier.doi | 10.1002/ima.22643 | |
dc.identifier.issn | 0899-9457eISSN1098-1098 | |
dc.identifier.scopus | 2-s2.0-85112602678 | |
dc.identifier.uri | https://www.webofscience.com/wos/woscc/full-record/WOS:000683053400001?AlertId=d383397b-4355-449e-9419-70f9e0e77c15&SID=D1lBdBjpt2OvCmqadyu | |
dc.identifier.uri | https://www.scopus.com/record/display.uri?eid=2-s2.0-85112602678&origin=resultslist&sort=plf-f&src=s&sid=fc97de04c654bea02bb580471cf2925e&sot=b&sdt=b&sl=22&s=DOI%2810.1002%2fima.22643%29&relpos=0&citeCnt=0&searchTerm= | |
dc.identifier.uri | https://doi.org/10.1002/ima.22643 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12514/2810 | |
dc.identifier.wos | WOS:000683053400001 | |
dc.identifier.wosquality | Q3 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley Online Library | en_US |
dc.relation.ispartof | INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | classification, CNN, cursor movement, k-NN, raw EEG, SVM | en_US |
dc.title | Classification of electroencephalogram records related to cursor movements with a hybrid method based on deep learning | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | d7a05184-8649-4d7a-9ede-47416afad38e | |
relation.isAuthorOfPublication.latestForDiscovery | d7a05184-8649-4d7a-9ede-47416afad38e |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ima.22643.pdf
- Size:
- 2.68 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full text - Article
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.44 KB
- Format:
- Item-specific license agreed upon to submission
- Description: