Multi-task learning for arousal and sleep stage detection using fully convolutional networks

dc.contributor.author Zan, Hasan
dc.contributor.author Yıldız, Abdulnasır
dc.date.accessioned 2023-12-18T15:08:28Z
dc.date.available 2023-12-18T15:08:28Z
dc.date.issued 2023
dc.description.abstract Objective. Sleep is a critical physiological process that plays a vital role in maintaining physical and mental health. Accurate detection of arousals and sleep stages is essential for the diagnosis of sleep disorders, as frequent and excessive occurrences of arousals disrupt sleep stage patterns and lead to poor sleep quality, negatively impacting physical and mental health. Polysomnography is a traditional method for arousal and sleep stage detection that is time-consuming and prone to high variability among experts. Approach. In this paper, we propose a novel multi-task learning approach for arousal and sleep stage detection using fully convolutional neural networks. Our model, FullSleepNet, accepts a full-night single-channel EEG signal as input and produces segmentation masks for arousal and sleep stage labels. FullSleepNet comprises four modules: a convolutional module to extract local features, a recurrent module to capture long-range dependencies, an attention mechanism to focus on relevant parts of the input, and a segmentation module to output final predictions. Main results. By unifying the two interrelated tasks as segmentation problems and employing a multi-task learning approach, FullSleepNet achieves state-of-the-art performance for arousal detection with an area under the precision-recall curve of 0.70 on Sleep Heart Health Study and Multi-Ethnic Study of Atherosclerosis datasets. For sleep stage classification, FullSleepNet obtains comparable performance on both datasets, achieving an accuracy of 0.88 and an F1-score of 0.80 on the former and an accuracy of 0.83 and an F1-score of 0.76 on the latter. Significance. Our results demonstrate that FullSleepNet offers improved practicality, efficiency, and accuracy for the detection of arousal and classification of sleep stages using raw EEG signals as input. en_US
dc.identifier.doi 10.1088/1741-2552/acfe3a
dc.identifier.issn 1741-2560
dc.identifier.issn 1741-2552
dc.identifier.uri https://hdl.handle.net/20.500.12514/4980
dc.language.iso en en_US
dc.relation.ispartof Journal of Neural Engineering
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title Multi-task learning for arousal and sleep stage detection using fully convolutional networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Hasan, Zan
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department MAÜ, Meslek Yüksekokulları, Mardin Meslek Yüksekokulu, Elektrik ve Enerji Bölümü en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 56034 en_US
gdc.description.volume 20 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4387124200
gdc.identifier.pmid 37769664
gdc.index.type WoS
gdc.oaire.diamondjournal false
gdc.oaire.downloads 5
gdc.oaire.impulse 10.0
gdc.oaire.influence 2.9920144E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Signal Processing (eess.SP)
gdc.oaire.keywords Multi-ethnic study of atherosclerosis (MESA)
gdc.oaire.keywords Polysomnography
gdc.oaire.keywords Sleep heart health study (SHHS)
gdc.oaire.keywords Sleep stage classification
gdc.oaire.keywords Electroencephalography
gdc.oaire.keywords Multi-task learning
gdc.oaire.keywords Sleep arousal detection
gdc.oaire.keywords FOS: Electrical engineering, electronic engineering, information engineering
gdc.oaire.keywords Fully convolutional networks
gdc.oaire.keywords Sleep Stages
gdc.oaire.keywords Electrical Engineering and Systems Science - Signal Processing
gdc.oaire.keywords Sleep
gdc.oaire.keywords Arousal
gdc.oaire.keywords Sleep scoring
gdc.oaire.popularity 8.933784E-9
gdc.oaire.publicfunded false
gdc.oaire.views 24
gdc.openalex.collaboration National
gdc.openalex.fwci 2.63772752
gdc.openalex.normalizedpercentile 0.86
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.crossrefcites 10
gdc.plumx.mendeley 16
gdc.plumx.pubmedcites 2
gdc.plumx.scopuscites 13
gdc.virtual.author Zan, Hasan
relation.isAuthorOfPublication b6be3e7d-3260-4abd-bb65-c5dae94c0182
relation.isAuthorOfPublication.latestForDiscovery b6be3e7d-3260-4abd-bb65-c5dae94c0182
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication b4a7a54e-df38-44d5-9f03-ab3ce38ad8a8
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: