MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Balina Optimizasyon Algoritması Kullanılarak Türkiye’nin Uzun Vadeli Enerji Tüketimi Tahmini

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE Xplore

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Enerji, ülkelerin sürdürülebilir kalkınmaları için en önemli konu başlıklarından biridir. Kullanılan enerjinin tükenebilir olması, birçok enerji kaynağını ithal ediyor olması ve çevresel faktörlerden dolayı Türkiye için gelecekte enerji ihtiyacının ne kadar olabileceğinin tahmin edilebilmesi büyük önem taşımaktadır. Bu çalışmada Türkiye’nin 2040 yılına kadarki enerji tüketim tahminini yapabilmek adına, sezgisel algoritmalardan balina optimizasyon algoritması (BOA) tercih edilmiştir. Balina optimizasyon algoritmasının performansını belirleyebilmek için elde edilen veriler, genetik algoritma (GA) sonuçları ile karşılaştırılmıştır. Tüm modeller doğrusal olarak düzenlenip sonuç alınmıştır. Enerji talebini etkileyen gayri safi yurtiçi hasıla (GSYH), nüfus, ithalat ve ihracat gibi bağımsız değişkenlerin 1990-2019 yılları arasındaki verileri kullanılmıştır. Sonuçların doğruluğunu hesaplayabilmek için geçmiş 30 yılın modellenmesi sağlanmıştır. En uygun model elde edildikten sonra gelecek 20 yıl için 4 farklı senaryoya göre tahminler yapılmıştır.
Energy is one of the most important topics for the sustainable development of countries. Due to the fact that the energy used can be depleted, it imports many energy sources, and environmental factors, it is of great importance for Turkey to predict how much energy needs may be in the future. In this study, whale optimization algorithm (BOA) was preferred from heuristic algorithms in order to be able to estimate Turkey's energy demand until 2040. In order to determine the performance of the whale optimization algorithm, the results were compared with the genetic algorithm (GA). All models are arranged linearly and squared and the result is obtained. Data for independent variables such as gross domestic product (GDP), population, imports and exports affecting energy demand were used between 1990 and 2019. Modeling of the past 30 years has been provided to calculate the accuracy of the results. After obtaining the most suitable model, calculations were made according to 4 different scenarios for the next 20 years

Description

Keywords

EGnetic Algorithm; Energy Consumption; Predict; Turkey; Whale Optimization Algorithm, Balina Optimizasyon Algoritması, Genetik Algoritma, Türkiye, Enerji Tüketim, Tahmin

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

SIU 2021 - 29th IEEE Conference on Signal Processing and Communications Applications, Proceedings

Volume

Issue

Start Page

End Page