Local Pattern Transformation-Based convolutional neural network for sleep stage scoring

dc.contributor.author Zan, Hasan
dc.contributor.author Yildiz, Abdulnasır
dc.date.accessioned 2023-01-13T10:38:21Z
dc.date.available 2023-01-13T10:38:21Z
dc.date.issued 2023
dc.description.abstract Sleep stage scoring is essential for the diagnosis and treatment of sleep disorders. However, manual sleep scoring is a tedious, time-consuming, and subjective task. Therefore, this paper proposes a novel framework based on local pattern transformation (LPT) methods and convolutional neural networks for automatic sleep stage scoring. Unlike in previous works in other fields, these methods were not employed for manual feature extraction, which requires expert knowledge and the pipeline behind it might bias results. The transformed signals were directly fed into a CNN model (called EpochNet) that can accept multiple successive epochs. The model learns features from multiple input epochs and considers inter-epoch context during classification. To evaluate and validate the effectiveness of the proposed approach, we conducted several experiments on the Sleep-EDF dataset. Four LPT methods, including One-dimensional Local Binary Pattern (1D-LBP), Local Neighbor Descriptive Pattern (LNDP), Local Gradient Pattern (LGP), and Local Neighbor Gradient Pattern (LNGP), and different polysomnography (PSG) signals were analyzed as sequence length (number of input epochs) increased from one to five. 1D-LBP and LNDP achieved similar performances, outperforming other LPT methods that are less sensitive to local variations. The best performance was achieved when an input sequence containing five epochs of PSG signals transformed by 1D-LBP was employed. The best accuracy, F1 score, and Kohen’s kappa coefficient were 0.848, 0.782, and 0.790, respectively. The results showed that our approach can achieve comparable performance to other state-ofthe-art methods while occupying fewer computing resources because of the compact size of EpochNet. en_US
dc.identifier.citation Zan, H., & Yildiz, A. (2023). Local Pattern Transformation-Based convolutional neural network for sleep stage scoring. Biomedical Signal Processing and Control, 80, 104275. en_US
dc.identifier.doi 10.1016/j.bspc.2022.104275
dc.identifier.issn 1746-8094
dc.identifier.scopus 2-s2.0-85140039524
dc.identifier.uri https://doi.org/10.1016/j.bspc.2022.104275
dc.identifier.uri https://www.scopus.com/record/display.uri?eid=2-s2.0-85140039524&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=47ef5101aa9ba18fdad3ec6f53f717fa
dc.identifier.uri https://hdl.handle.net/20.500.12514/3315
dc.language.iso en en_US
dc.publisher ScienceDirect en_US
dc.relation.ispartof Biomedical Signal Processing and Control en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Sleep stage scoringLocal pattern TransformationLPTOne-dimensional Local Binary Pattern1D-LBPLocal Neighbor Descriptive PatternLNDPLocal Gradient PatternLGPLocal Neighbor Gradient PatternLNGPConvolutional neural networkCNN en_US
dc.title Local Pattern Transformation-Based convolutional neural network for sleep stage scoring en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id 0000-0002-8156-016X
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department MAÜ, Meslek Yüksekokulları, Mardin Meslek Yüksekokulu, Elektrik ve Enerji Bölümü en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 104275
gdc.description.volume 80 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4304693976
gdc.identifier.wos WOS:000877950400001
gdc.index.type WoS en_US
gdc.index.type Scopus en_US
gdc.oaire.diamondjournal false
gdc.oaire.downloads 3
gdc.oaire.impulse 13.0
gdc.oaire.influence 3.0041054E-9
gdc.oaire.isgreen false
gdc.oaire.keywords 1D-LBP
gdc.oaire.keywords LNGP
gdc.oaire.keywords LNDP
gdc.oaire.keywords LPT
gdc.oaire.keywords Local neighbor descriptive pattern
gdc.oaire.keywords Local neighbor gradient pattern
gdc.oaire.keywords One-dimensional local binary pattern
gdc.oaire.keywords LGP
gdc.oaire.keywords Convolutional neural network
gdc.oaire.keywords Sleep stage scoring
gdc.oaire.keywords Sleep stage scoringLocal pattern TransformationLPTOne-dimensional Local Binary Pattern1D-LBPLocal Neighbor Descriptive PatternLNDPLocal Gradient PatternLGPLocal Neighbor Gradient PatternLNGPConvolutional neural networkCNN
gdc.oaire.keywords Local gradient pattern
gdc.oaire.keywords CNN
gdc.oaire.keywords Local pattern transformation
gdc.oaire.popularity 1.12925E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.views 18
gdc.openalex.collaboration National
gdc.openalex.fwci 2.24729278
gdc.openalex.normalizedpercentile 0.83
gdc.opencitations.count 6
gdc.plumx.crossrefcites 13
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 14
gdc.scopus.citedcount 14
gdc.virtual.author Zan, Hasan
gdc.wos.citedcount 12
relation.isAuthorOfPublication b6be3e7d-3260-4abd-bb65-c5dae94c0182
relation.isAuthorOfPublication.latestForDiscovery b6be3e7d-3260-4abd-bb65-c5dae94c0182
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication b4a7a54e-df38-44d5-9f03-ab3ce38ad8a8
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S1746809422007297-main.pdf
Size:
5.83 MB
Format:
Adobe Portable Document Format
Description:
Full Text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: