Nonlinear Modeling of Temperature-Driven Mycelial Growth Reveals Divergent Thermal Niches in Multinucleate and Binucleate Rhizoctonia Isolates

dc.contributor.author Turkkan, Muharrem
dc.contributor.author Ozer, Goksel
dc.contributor.author Dervis, Sibel
dc.date.accessioned 2025-12-15T15:46:47Z
dc.date.available 2025-12-15T15:46:47Z
dc.date.issued 2025
dc.description.abstract Temperature fundamentally governs fungal growth and pathogenic potential, yet conventional polynomial approaches often produce biologically unrealistic cardinal temperature estimates. Robust thermal performance characterization is crucial for disease risk prediction and elucidating the ecological adaptations of Rhizoctonia spp., a soilborne pathogen of substantial economic and ecological significance. We conducted a systematic comparison of 11 nonlinear regression frameworks to describe temperature-dependent mycelial growth dynamics across 17 isolates, encompassing 11 binucleate (BN) Rhizoctonia and six multinucleate (MN) R. solani anastomosis groups (AGs). We evaluated model performance using a multicriteria approach that combined goodness-of-fit statistics (adjusted R-2, RMSE, SE) with information-theoretic measures (AICc, Akaike weights omega(i)). No single model proved universally superior. However, asymmetric models consistently outperformed symmetric ones in capturing nonlinear thermal responses. Thermal characterization using the best-fit models revealed divergent ecological strategies: BN Rhizoctonia isolates showed broad thermal tolerance ranges (base temperature, T-b: 5.43-13.86 degrees C; optimal temperature, T-opt: 19.42-31.03 degrees C), indicative of generalist adaptation. Conversely, MN R. solani isolates exhibited restricted, elevated-temperature preferences (T-b: 7.18-15.47 degrees C; T-opt: 24.70-28.39 degrees C), reflecting a specialized, highly aggressive pathogenic phenotype. Bootstrap resampling (n = 1,000) confirmed overwhelming statistical significance for all cardinal parameters (p < 10(-9)), with optimal temperatures exhibiting the highest precision (median SE = 0.28 degrees C). Our findings highlight the value of nonlinear, biologically grounded models-notably Segmented and Weibull formulations-for resolving thermal growth kinetics in Rhizoctonia spp. The multicriteria model selection strategy we present has wide-ranging applicability to ecophysiological investigations and facilitates climate-adaptive approaches to disease forecasting and integrated management. en_US
dc.identifier.doi 10.1021/acsagscitech.5c00645
dc.identifier.issn 2692-1952
dc.identifier.uri https://doi.org/10.1021/acsagscitech.5c00645
dc.identifier.uri https://hdl.handle.net/20.500.12514/10057
dc.language.iso en en_US
dc.publisher American Chemical Society en_US
dc.relation.ispartof ACS Agricultural Science & Technology en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Rhizoctonia Anastomosis Groups en_US
dc.subject Mycelialgrowth en_US
dc.subject Cardinal Temperatures en_US
dc.subject Nonlinear Regressionmodels en_US
dc.subject Thermal Adaptation en_US
dc.subject Model Selection en_US
dc.subject Fungal Ecology en_US
dc.title Nonlinear Modeling of Temperature-Driven Mycelial Growth Reveals Divergent Thermal Niches in Multinucleate and Binucleate Rhizoctonia Isolates en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.wosid Derviş, Sibel/Agz-5581-2022
gdc.author.wosid Özer, Göksel/Aaz-9120-2020
gdc.author.wosid Türkkan, Muharrem/Abf-4420-2020
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp [Turkkan, Muharrem] Ordu Univ, Fac Agr, Dept Plant Protect, TR-52200 Ordu, Turkiye; [Ozer, Goksel] Bolu Abant Izzet Baysal Univ, Fac Agr, Dept Plant Protect, TR-14030 Bolu, Turkiye; [Dervis, Sibel] Mardin Artuklu Univ, Kiziltepe Fac Agr Sci & Technol, Dept Plant Protect, TR-47000 Mardin, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality Q1
gdc.identifier.openalex W7105656290
gdc.identifier.wos WOS:001616826700001
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.87
gdc.opencitations.count 0
gdc.wos.citedcount 0

Files