A Class Activation Map-Based Interpretable Transfer Learning Model for Automated Detection of ADHD from fMRI Data

dc.contributor.author Uyulan, Caglar
dc.contributor.author Erguzel, Turker Tekin
dc.contributor.author Türk, Ömer
dc.contributor.author Farhad, Shams
dc.contributor.author Metin, Bariş
dc.contributor.author Tarhan, Nevzat
dc.contributor.author Türk, Ömer
dc.contributor.other 08.01. Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
dc.contributor.other 08. Faculty of Engineering and Architecture / Mühendislik Mimarlık Fakültesi
dc.contributor.other 01. Mardin Artuklu University / Mardin Artuklu Üniversitesi
dc.date.accessioned 2022-12-21T06:00:49Z
dc.date.available 2022-12-21T06:00:49Z
dc.date.issued 2022
dc.description.abstract Automatic detection of Attention Deficit Hyperactivity Disorder (ADHD) based on the functional Magnetic Resonance Imaging (fMRI) through Deep Learning (DL) is becoming a quite useful methodology due to the curse of-dimensionality problem of the data is solved. Also, this method proposes an invasive and robust solution to the variances in data acquisition and class distribution imbalances. In this paper, a transfer learning approach, specifically ResNet-50 type pre-trained 2D-Convolutional Neural Network (CNN) was used to automatically classify ADHD and healthy children. The results demonstrated that ResNet-50 architecture with 10-k cross-validation (CV) achieves an overall classification accuracy of 93.45%. The interpretation of the results was done via the Class Activation Map (CAM) analysis which showed that children with ADHD differed from controls in a wide range of brain areas including frontal, parietal and temporal lobes. en_US
dc.identifier.citation Uyulan, C., Erguzel, T. T., Turk, O., Farhad, S., Metin, B., & Tarhan, N. (2022). A Class Activation Map-Based Interpretable Transfer Learning Model for Automated Detection of ADHD from fMRI Data. Clinical EEG and Neuroscience en_US
dc.identifier.doi 10.1177/15500594221122
dc.identifier.scopus 2-s2.0-85138308313
dc.identifier.uri https://doi.org/10.1177/15500594221122
dc.identifier.uri https://pubmed.ncbi.nlm.nih.gov/36052402/
dc.identifier.uri https://hdl.handle.net/20.500.12514/3178
dc.identifier.uri A Class Activation Map-Based Interpretable Transfer Learning Model for Automated Detection of ADHD from fMRI Data
dc.identifier.uri https://www.scopus.com/record/display.uri?eid=2-s2.0-85138308313&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=0128eb28694b092589cd0a0f77709986
dc.indekslendigikaynak Web of Science en_US
dc.indekslendigikaynak Scopus en_US
dc.indekslendigikaynak PubMed en_US
dc.language.iso en en_US
dc.publisher Sage Journals en_US
dc.relation.ispartof Clinical EEG and Neuroscience en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject attention deficit hyperactivity disorder; class activation maps; convolutional neural network; functional magnetic resonance imaging; transfer learning. en_US
dc.title A Class Activation Map-Based Interpretable Transfer Learning Model for Automated Detection of ADHD from fMRI Data en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id 0000-0002-0060-1880
gdc.description.department MAÜ, Meslek Yüksekokulları, Mardin Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.wosquality Q3
gdc.identifier.pmid 36052402
gdc.identifier.wos WOS:000849065500001
gdc.scopus.citedcount 17
gdc.wos.citedcount 16
relation.isAuthorOfPublication d7a05184-8649-4d7a-9ede-47416afad38e
relation.isAuthorOfPublication.latestForDiscovery d7a05184-8649-4d7a-9ede-47416afad38e
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication b4a7a54e-df38-44d5-9f03-ab3ce38ad8a8
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: