MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Class Activation Map-Based Interpretable Transfer Learning Model for Automated Detection of ADHD from fMRI Data

dc.authorid 0000-0002-0060-1880
dc.contributor.author Uyulan, Caglar
dc.contributor.author Erguzel, Turker Tekin
dc.contributor.author Türk, Ömer
dc.contributor.author Farhad, Shams
dc.contributor.author Metin, Bariş
dc.contributor.author Tarhan, Nevzat
dc.contributor.author Türk, Ömer
dc.contributor.other Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
dc.date.accessioned 2022-12-21T06:00:49Z
dc.date.available 2022-12-21T06:00:49Z
dc.date.issued 2022
dc.department MAÜ, Meslek Yüksekokulları, Mardin Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümü en_US
dc.description.abstract Automatic detection of Attention Deficit Hyperactivity Disorder (ADHD) based on the functional Magnetic Resonance Imaging (fMRI) through Deep Learning (DL) is becoming a quite useful methodology due to the curse of-dimensionality problem of the data is solved. Also, this method proposes an invasive and robust solution to the variances in data acquisition and class distribution imbalances. In this paper, a transfer learning approach, specifically ResNet-50 type pre-trained 2D-Convolutional Neural Network (CNN) was used to automatically classify ADHD and healthy children. The results demonstrated that ResNet-50 architecture with 10-k cross-validation (CV) achieves an overall classification accuracy of 93.45%. The interpretation of the results was done via the Class Activation Map (CAM) analysis which showed that children with ADHD differed from controls in a wide range of brain areas including frontal, parietal and temporal lobes. en_US
dc.description.citation Uyulan, C., Erguzel, T. T., Turk, O., Farhad, S., Metin, B., & Tarhan, N. (2022). A Class Activation Map-Based Interpretable Transfer Learning Model for Automated Detection of ADHD from fMRI Data. Clinical EEG and Neuroscience en_US
dc.identifier.doi 10.1177/15500594221122
dc.identifier.pmid 36052402
dc.identifier.scopus 2-s2.0-85138308313
dc.identifier.uri https://doi.org/10.1177/15500594221122
dc.identifier.uri https://pubmed.ncbi.nlm.nih.gov/36052402/
dc.identifier.uri https://hdl.handle.net/20.500.12514/3178
dc.identifier.uri A Class Activation Map-Based Interpretable Transfer Learning Model for Automated Detection of ADHD from fMRI Data
dc.identifier.uri https://www.scopus.com/record/display.uri?eid=2-s2.0-85138308313&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=0128eb28694b092589cd0a0f77709986
dc.identifier.wos WOS:000849065500001
dc.identifier.wosquality Q3
dc.indekslendigikaynak Web of Science en_US
dc.indekslendigikaynak Scopus en_US
dc.indekslendigikaynak PubMed en_US
dc.language.iso en en_US
dc.publisher Sage Journals en_US
dc.relation.ispartof Clinical EEG and Neuroscience en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 17
dc.subject attention deficit hyperactivity disorder; class activation maps; convolutional neural network; functional magnetic resonance imaging; transfer learning. en_US
dc.title A Class Activation Map-Based Interpretable Transfer Learning Model for Automated Detection of ADHD from fMRI Data en_US
dc.type Article en_US
dc.wos.citedbyCount 17
dspace.entity.type Publication
relation.isAuthorOfPublication d7a05184-8649-4d7a-9ede-47416afad38e
relation.isAuthorOfPublication.latestForDiscovery d7a05184-8649-4d7a-9ede-47416afad38e
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: