A Hybrid Approach Consisting of 3d Depthwise Separable Convolution and Depthwise Squeeze-And Network for Hyperspectral Image Classification

dc.contributor.author Gungor, Mustafa
dc.contributor.author Asker, Mehmet Emin
dc.date.accessioned 2024-09-13T22:43:44Z
dc.date.accessioned 2025-09-17T14:28:06Z
dc.date.available 2024-09-13T22:43:44Z
dc.date.available 2025-09-17T14:28:06Z
dc.date.issued 2024
dc.description Asker, Mehmet Emin/0000-0003-4585-4168; Gungor, Mustafa/0000-0002-2702-8877; en_US
dc.description.abstract Hyperspectral image classification is crucial for a wide range of applications, including environmental monitoring, precision agriculture, and mining, due to its ability to capture detailed spectral information across numerous wavelengths. However, the high dimensionality and complex spatial-spectral relationships in hyperspectral data pose significant challenges. Deep learning, particularly Convolutional Neural Networks (CNNs), has shown remarkable success in automatically extracting relevant features from high-dimensional data, making them well-suited for handling the intricate spatial-spectral relationships in hyperspectral images.This study presents a hybrid approach for hyperspectral image classification, combining 3D Depthwise Separable Convolution (3D DSC) and Depthwise Squeeze-and-Excitation Network (DSENet). The 3D DSC efficiently captures spatial-spectral features, reducing computational complexity while preserving essential information. The DSENet further refines these features by applying channel-wise attention, enhancing the model's ability to focus on the most informative features. To assess the performance of the proposed hybrid model, extensive experimental studies were carried out on four commonly utilized HSI datasets, namely HyRANK-Loukia and WHU-Hi (including HongHu, HanChuan, and LongKou). As a result of the experimental studies, the HyRANK-Loukia achieved an accuracy of 90.9%, marking an 8.86% increase compared to its previous highest accuracy. Similarly, for the WHU-Hi datasets, HongHu achieved an accuracy of 97.49%, reflecting a 2.11% improvement over its previous highest accuracy; HanChuan achieved an accuracy of 97.49%, showing a 2.4% improvement; and LongKou achieved an accuracy of 99.79%, providing a 0.15% improvement compared to its previous highest accuracy. Comparative analysis highlights the superiority of the proposed model, emphasizing improved classification accuracy with lower computational costs. en_US
dc.identifier.citation Asker, M.E., Güngör, M. A hybrid approach consisting of 3D depthwise separable convolution and depthwise squeeze-and-excitation network for hyperspectral image classification. Earth Sci Inform (2024). https://doi.org/10.1007/s12145-024-01469-2 en_US
dc.identifier.doi 10.1007/s12145-024-01469-2
dc.identifier.issn 1865-0473
dc.identifier.issn 1865-0481
dc.identifier.scopus 2-s2.0-85203706804
dc.identifier.uri https://doi.org/10.1007/s12145-024-01469-2
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.relation.ispartof Earth Science Informatics en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Depthwise Separable Convolution en_US
dc.subject Hyperspectral Images Classification en_US
dc.subject CNN en_US
dc.subject Deep Learning en_US
dc.subject Squeeze and Excitation Network en_US
dc.title A Hybrid Approach Consisting of 3d Depthwise Separable Convolution and Depthwise Squeeze-And Network for Hyperspectral Image Classification en_US
dc.title A Hybrid Approach Consisting of 3D Depthwise Separable Convolution and Depthwise Squeeze-And Network for Hyperspectral Image Classification
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Asker, Mehmet Emin/0000-0003-4585-4168
gdc.author.id Gungor, Mustafa/0000-0002-2702-8877
gdc.author.wosid Gungor, Mustafa/Jpl-0599-2023
gdc.author.wosid Güngör, Mustafa/Jpl-0599-2023
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp [Asker, Mehmet Emin] Dicle Univ, Vocat Sch Tech Sci, Dept Elect & Energy, Diyarbakir, Turkiye; [Gungor, Mustafa] Mardin Artuklu Univ, Vocat Sch Midyat, Dept Elect & Energy, TR-47200 Mardin, Turkiye en_US
gdc.description.endpage 5821 en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 5795 en_US
gdc.description.volume 17 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4402481739
gdc.identifier.wos WOS:001310620500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 3.092318E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Squeeze and excitation network
gdc.oaire.keywords Hyperspectral images classification
gdc.oaire.keywords Deep learning
gdc.oaire.keywords Depthwise separable convolution
gdc.oaire.keywords CNN
gdc.oaire.popularity 7.0365505E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 4.30454501
gdc.openalex.normalizedpercentile 0.91
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 8
gdc.wos.citedcount 4
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery 39ccb12e-5b2b-4b51-b989-14849cf90cae

Files