Electrochemical Behavior of Pt Nano-Particles Dispersed on Cu/Ni Electrode in Alkaline Environment
Loading...

Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pergamon Elsevier Science Ltd
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
The development of a low-cost Pt-based electrocatalyst for industrial water splitting is important. In this study, to prepare cost-efficient Pt-based electrocatalyst for hydrogen evolution, Cu electrode is deposited with nickel (Cu/ Ni) and this surface is modified with Pt nanoparticles by electrodeposition method (Cu/Ni-Pt). The surface properties of the produced electrocatalysts are studied via X-ray diffraction (XRD), scanning electron spectroscopy (SEM), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Characterizations demonstrated that the coating is homogeneous and compact. Hydrogen evolution and corrosion behaviors of prepared electrode (Cu/Ni-Pt) are examined in 1.0 M KOH solution using cyclic voltammetry (CV) and cathodic and anodic current-potential curves, electrochemical impedance spectroscopy (EIS). Tafel slope is determined to be 133 mV dec(-1) on Cu/Ni-Pt. Very high exchange current density (5.65 mA cm(-2)) and very low charge transfer resistance (0.91 Omega cm(2) at 1.05 V vs RHE) are measured again on this electrocatalyst. High activity is due to intrinsic activity of Pt and synergistic interaction of Pt and Ni. Besides, Cu/Ni-Pt exhibits so stable structure over 4 h without any current densities decay as well as showing good corrosion performance after long-term immersion times and these properties make it possible electrocatalyst with high corrosion resistant and activity in the water electrolysis systems.
Description
Doner, Ali/0000-0002-3403-5370;
ORCID
Keywords
Hydrogen Evolution Reaction, Pt Based Electrocatalyst, Electrochemical Properties, Pt based electrocatalyst, Electrochemical properties, Hydrogen evolution reaction
Fields of Science
02 engineering and technology, 0210 nano-technology, 01 natural sciences, 0104 chemical sciences
Citation
Döşlü, S. T. and Döner, A. (2024). Electrochemical behavior of pt nano-particles dispersed on cu/ni electrode in alkaline environment. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2024.01.194
WoS Q
Q1
Scopus Q
Q1

OpenCitations Citation Count
1
Source
International Journal of Hydrogen Energy
Volume
75
Issue
Start Page
245
End Page
252
PlumX Metrics
Citations
CrossRef : 1
Scopus : 2
Captures
Mendeley Readers : 3
SCOPUS™ Citations
2
checked on Feb 20, 2026
Web of Science™ Citations
2
checked on Feb 20, 2026
Page Views
2
checked on Feb 20, 2026
Google Scholar™

OpenAlex FWCI
0.36715463
Sustainable Development Goals
7
AFFORDABLE AND CLEAN ENERGY


