MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Scientific Mapping of Artificial Intelligence (AI) Assisted Applications in Historical Building Conservation

dc.authorscopusid 58034401800
dc.authorwosid Kutlu, İzzettin/Jtt-8752-2023
dc.contributor.author Kutlu, İzzettin
dc.contributor.other Department of Architecture / Mimarlık Bölümü
dc.date.accessioned 2025-06-19T13:45:12Z
dc.date.available 2025-06-19T13:45:12Z
dc.date.issued 2025
dc.department Artuklu University en_US
dc.department-temp [Kutlu, Izzettin] Mardin Artuklu Univ, Dept Architecture, Mardin, Turkiye en_US
dc.description.abstract The application of developing computer technologies such as artificial intelligence (AI), deep learning (DL), and machine learning (ML) on digital image data can help in monitoring, controlling, and preserving cultural heritage buildings. Defects such as mortar losses, joint damage, discoloration, erosion, cracks, vegetation, leakage, and vandalism seen in cultural heritage buildings negatively affect their structural health. There are a limited number of studies on the use of artificial intelligence and integration at cultural heritage buildings. This study includes the research and bibliometric analysis of existing studies. In the study, structural damage detection techniques performed using AI-assisted image processing techniques are summarized, and deep learning techniques applied, especially in the conservation of heritage sites, are detailed. The study found a significant deficiency in the number of applications and research in this field, particularly within T & uuml;rkiye. AI-assisted digital inspections provide useful data for studies to be conducted in this field and increase the level of confidence in the damage detection of heritage buildings. As a result, today, artificial intelligence, the effective use of which is increasing rapidly, can be integrated into many fields and enables interdisciplinary studies. en_US
dc.description.woscitationindex Science Citation Index Expanded - Arts & Humanities Citation Index
dc.identifier.doi 10.1080/13467581.2025.2505794
dc.identifier.issn 1346-7581
dc.identifier.issn 1347-2852
dc.identifier.scopus 2-s2.0-105005527915
dc.identifier.scopusquality Q3
dc.identifier.uri https://doi.org/10.1080/13467581.2025.2505794
dc.identifier.uri https://hdl.handle.net/20.500.12514/8944
dc.identifier.wos WOS:001489341700001
dc.identifier.wosquality Q4
dc.institutionauthor Kutlu, Izzettin
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Artificial Intelligence en_US
dc.subject Historical Building en_US
dc.subject Cultural Heritage en_US
dc.subject Deep Learning en_US
dc.subject Bibliometrics en_US
dc.title Scientific Mapping of Artificial Intelligence (AI) Assisted Applications in Historical Building Conservation en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 28b9ed4e-fb28-43d8-ba23-831657e58ede
relation.isAuthorOfPublication.latestForDiscovery 28b9ed4e-fb28-43d8-ba23-831657e58ede
relation.isOrgUnitOfPublication c50be6ae-5559-4d61-8663-42bc5905c17f
relation.isOrgUnitOfPublication.latestForDiscovery c50be6ae-5559-4d61-8663-42bc5905c17f

Files