Abnormal Heart Sound Detection Using Ensemble Classifiers

dc.contributor.author Zan, H.
dc.contributor.author Yildiz, A.
dc.contributor.author Zan, Hasan
dc.contributor.other 08.01. Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
dc.contributor.other 08. Faculty of Engineering and Architecture / Mühendislik Mimarlık Fakültesi
dc.contributor.other 01. Mardin Artuklu University / Mardin Artuklu Üniversitesi
dc.date.accessioned 2019-06-26T12:44:33Z
dc.date.available 2019-06-26T12:44:33Z
dc.date.issued 2019
dc.description Zan, Hasan/0000-0002-8156-016X en_US
dc.description.abstract Phonocardiogram is used for ambulatory diagnostic to assess health status of heart and detect cardiovascular disease. The goal of this study is to develop automatic classification method of PCG recordings collected from different databases and recorded in a different way. For this purpose, after various time and frequency domain features are extracted from PCG recordings obtained from two databases, recordings are subjected to pre-classification in order determine which database they are obtained from. Before final classification, various time, frequency and time-frequency domain features of classified recordings are extracted. These features are fed into four different classification ensembles trained with training dataset. With final decision rule, proposed algorithm achieved an accuracy of 98.9%, a sensitivity of 93.75% and a specify of 99.5%. © 2018 IEEE. en_US
dc.identifier.citation H. Zan and A. Yıldız, "Abnormal Heart Sound Detection Using Ensemble Classifiers," 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), Malatya, Turkey, 2018, pp. 1-4. en_US
dc.identifier.doi 10.1109/IDAP.2018.8620818
dc.identifier.isbn 9781538668788
dc.identifier.scopus 2-s2.0-85062521881
dc.identifier.uri https://doi.org/10.1109/IDAP.2018.8620818
dc.language.iso tr en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2018 International Conference on Artificial Intelligence and Data Processing, IDAP 2018 -- 2018 International Conference on Artificial Intelligence and Data Processing, IDAP 2018 -- 28 September 2018 through 30 September 2018 -- Malatya -- 144523 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Classification en_US
dc.subject Classification Ensembles en_US
dc.subject Heart Sound en_US
dc.subject Pcg en_US
dc.title Abnormal Heart Sound Detection Using Ensemble Classifiers en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57207469878
gdc.author.scopusid 36695480300
gdc.author.wosid Zan, Hasan/Aaf-2775-2019
gdc.author.wosid Yildiz, Abdulnasir/Izq-2323-2023
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp Zan H., Meslek Yüksekokulu, Mardin Artuklu Üniversitesi, Mardin, Turkey; Yildiz A., Elektrik - Elektronik Mühendisliǧi Bölümü, Dicle Üniversitesi, Diyarbakir, Turkey en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.wos WOS:000458717400096
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isAuthorOfPublication b6be3e7d-3260-4abd-bb65-c5dae94c0182
relation.isAuthorOfPublication.latestForDiscovery b6be3e7d-3260-4abd-bb65-c5dae94c0182
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication b4a7a54e-df38-44d5-9f03-ab3ce38ad8a8
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
makale_dosyası.pdf
Size:
487.26 KB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: