MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Abnormal Heart Sound Detection Using Ensemble Classifiers

dc.authorscopusid57207469878
dc.authorscopusid36695480300
dc.authorwosidZan, Hasan/Aaf-2775-2019
dc.authorwosidYildiz, Abdulnasir/Izq-2323-2023
dc.contributor.authorZan, H.
dc.contributor.authorYildiz, A.
dc.contributor.authorZan, Hasan
dc.date.accessioned2019-06-26T12:44:33Z
dc.date.available2019-06-26T12:44:33Z
dc.date.issued2019
dc.departmentArtuklu Universityen_US
dc.department-tempZan H., Meslek Yüksekokulu, Mardin Artuklu Üniversitesi, Mardin, Turkey; Yildiz A., Elektrik - Elektronik Mühendisliǧi Bölümü, Dicle Üniversitesi, Diyarbakir, Turkeyen_US
dc.descriptionZan, Hasan/0000-0002-8156-016Xen_US
dc.description.abstractPhonocardiogram is used for ambulatory diagnostic to assess health status of heart and detect cardiovascular disease. The goal of this study is to develop automatic classification method of PCG recordings collected from different databases and recorded in a different way. For this purpose, after various time and frequency domain features are extracted from PCG recordings obtained from two databases, recordings are subjected to pre-classification in order determine which database they are obtained from. Before final classification, various time, frequency and time-frequency domain features of classified recordings are extracted. These features are fed into four different classification ensembles trained with training dataset. With final decision rule, proposed algorithm achieved an accuracy of 98.9%, a sensitivity of 93.75% and a specify of 99.5%. © 2018 IEEE.en_US
dc.description.citationH. Zan and A. Yıldız, "Abnormal Heart Sound Detection Using Ensemble Classifiers," 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), Malatya, Turkey, 2018, pp. 1-4.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.doi10.1109/IDAP.2018.8620818
dc.identifier.isbn9781538668788
dc.identifier.scopus2-s2.0-85062521881
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/IDAP.2018.8620818
dc.identifier.wosWOS:000458717400096
dc.identifier.wosqualityN/A
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2018 International Conference on Artificial Intelligence and Data Processing, IDAP 2018 -- 2018 International Conference on Artificial Intelligence and Data Processing, IDAP 2018 -- 28 September 2018 through 30 September 2018 -- Malatya -- 144523en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClassificationen_US
dc.subjectClassification Ensemblesen_US
dc.subjectHeart Sounden_US
dc.subjectPcgen_US
dc.titleAbnormal Heart Sound Detection Using Ensemble Classifiersen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb6be3e7d-3260-4abd-bb65-c5dae94c0182
relation.isAuthorOfPublication.latestForDiscoveryb6be3e7d-3260-4abd-bb65-c5dae94c0182

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
makale_dosyası.pdf
Size:
487.26 KB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: