A New Approach for the Fractional Integral Operator in Time Scales With Variable Exponent Lebesgue Spaces

dc.contributor.author Akin, Lutfi
dc.date.accessioned 2021-08-24T15:04:15Z
dc.date.accessioned 2025-09-17T14:28:17Z
dc.date.available 2021-08-24T15:04:15Z
dc.date.available 2025-09-17T14:28:17Z
dc.date.issued 2021
dc.description Akin, Lutfi/0000-0002-5653-9393 en_US
dc.description.abstract Integral equations and inequalities have an important place in time scales and harmonic analysis. The norm of integral operators is one of the important study topics in harmonic analysis. Using the norms in different variable exponent spaces, the boundedness or compactness of the integral operators are examined. However, the norm of integral operators on time scales has been a matter of curiosity to us. In this study, we prove the equivalence of the norm of the restricted centered fractional maximal diamond-alpha integral operator M-a,delta(c) to the norm of the centered fractional maximal diamond-alpha integral operator M-a(c) on time scales with variable exponent Lebesgue spaces. This study will lead to the study of problems such as the boundedness and compactness of integral operators on time scales. en_US
dc.identifier.doi 10.3390/fractalfract5010007
dc.identifier.issn 2504-3110
dc.identifier.scopus 2-s2.0-85099937973
dc.identifier.uri https://doi.org/10.3390/fractalfract5010007
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.ispartof Fractal and Fractional en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Time Scales en_US
dc.subject Variable Exponent en_US
dc.subject Fractional Integral en_US
dc.subject Maximal Operator en_US
dc.title A New Approach for the Fractional Integral Operator in Time Scales With Variable Exponent Lebesgue Spaces en_US
dc.title A New Approach for the Fractional Integral Operator in Time Scales With Variable Exponent Lebesgue Spaces
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Akin, Lutfi/0000-0002-5653-9393
gdc.author.institutional Akin, Lutfi
gdc.author.wosid Akin, Lutfi/W-9660-2018
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp [Akin, Lutfi] Mardin Artuklu Univ, Dept Business Adm, TR-47200 Mardin, Turkey en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 7
gdc.description.volume 5 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3121080931
gdc.identifier.wos WOS:000636366500001
gdc.index.type Scopus en_US
gdc.index.type WoS
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.661843E-9
gdc.oaire.isgreen true
gdc.oaire.keywords QA299.6-433
gdc.oaire.keywords variable exponent
gdc.oaire.keywords fractional integral
gdc.oaire.keywords time scales
gdc.oaire.keywords QA1-939
gdc.oaire.keywords time scales; variable exponent; fractional integral; maximal operator
gdc.oaire.keywords Thermodynamics
gdc.oaire.keywords QC310.15-319
gdc.oaire.keywords maximal operator
gdc.oaire.keywords Mathematics
gdc.oaire.keywords Analysis
gdc.oaire.popularity 3.8494794E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 2.41067514
gdc.openalex.normalizedpercentile 0.9
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 3
gdc.plumx.crossrefcites 3
gdc.plumx.scopuscites 8
gdc.scopus.citedcount 8
gdc.virtual.author Akın, Lütfi
gdc.wos.citedcount 8
relation.isAuthorOfPublication 4b357ac1-6fb8-4e99-ab15-c4fc81362eca
relation.isAuthorOfPublication.latestForDiscovery 4b357ac1-6fb8-4e99-ab15-c4fc81362eca
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery 39ccb12e-5b2b-4b51-b989-14849cf90cae

Files