MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Deep Learning-Based Artificial Intelligence Can Differentiate Treatment-Resistant and Responsive Depression Cases With High Accuracy

dc.authoridTurk, Omer/0000-0002-0060-1880
dc.authoridErguzel, Turker/0000-0001-8438-6542
dc.authoridFarhad, Shams/0000-0003-0591-2765
dc.authorwosidTürk, Ömer/Aai-6751-2020
dc.authorwosidErguzel, Turker/G-2774-2019
dc.authorwosidTarhan, K./R-5911-2019
dc.authorwosidFarhad, Shams/Hhz-8838-2022
dc.contributor.authorMetin, Sinem Zeynep
dc.contributor.authorUyulan, Caglar
dc.contributor.authorFarhad, Shams
dc.contributor.authorErguzel, Tuerker Tekin
dc.contributor.authorTurk, Omer
dc.contributor.authorMetin, Baris
dc.contributor.authorTarhan, Nevzat
dc.contributor.authorTürk, Ömer
dc.date.accessioned2025-02-15T19:39:26Z
dc.date.available2025-02-15T19:39:26Z
dc.date.issued2025
dc.departmentArtuklu Universityen_US
dc.department-temp[Metin, Sinem Zeynep; Tarhan, Nevzat] Uskudar Univ, Dept Psychiat, Istanbul, Turkiye; [Uyulan, Caglar] Katip Celebi Univ, Dept Mech Engn, Izmir, Turkiye; [Farhad, Shams] Uskudar Univ, Dept Neurosci, Istanbul, Turkiye; [Erguzel, Tuerker Tekin] Uskudar Univ, Fac Engn & Nat Sci, Dept Software Engn, Istanbul, Turkiye; [Turk, Omer] Mardin Artuklu Univ, Dept Comp Technol, Mardin, Turkiye; [Metin, Baris] Uskudar Univ, Med Fac, Neurol Dept, Istanbul, Turkiye; [Cerezci, Onder] Uskudar Univ, Fac Hlth Sci, Dept Physioterapy & Rehabil, Istanbul, Turkiyeen_US
dc.description.abstractBackground: Although there are many treatment options available for depression, a large portion of patients with depression are diagnosed with treatment-resistant depression (TRD), which is characterized by an inadequate response to antidepressant treatment. Identifying the TRD population is crucial in terms of saving time and resources in depression treatment. Recently several studies employed various methods on EEG datasets for automatic depression detection or treatment outcome prediction. However, no previous study has used the deep learning (DL) approach and EEG signals for detecting treatment resistance. Method: 77 patients with TRD, 43 patients with non-TRD, and 40 healthy controls were compared using GoogleNet convolutional neural network and DL on EEG data. Additionally, Class Activation Maps (CAMs) acquired from the TRD and non-TRD groups were used to obtain distinctive regions for classification. Results: GoogleNet classified the healthy controls and non-TRD group with 88.43%, the healthy controls and TRD subjects with 89.73%, and the TRD and non-TRD group with 90.05% accuracy. The external validation accuracy for the TRD-non-TRD classification was 73.33%. Finally, the CAM analysis revealed that the TRD group contained dominant features in class detection of deep learning architecture in almost all electrodes. Limitations: Our study is limited by the moderate sample size of clinical groups and the retrospective nature of the study. Conclusion: These findings suggest that EEG-based deep learning can be used to classify treatment resistance in depression and may in the future prove to be a useful tool in psychiatry practice to identify patients who need more vigorous intervention.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationcount1
dc.identifier.doi10.1177/15500594241273181
dc.identifier.endpage130en_US
dc.identifier.issn1550-0594
dc.identifier.issn2169-5202
dc.identifier.issue2en_US
dc.identifier.pmid39251228
dc.identifier.scopus2-s2.0-85203512466
dc.identifier.scopusqualityQ2
dc.identifier.startpage119en_US
dc.identifier.urihttps://doi.org/10.1177/15500594241273181
dc.identifier.volume56en_US
dc.identifier.wosWOS:001308907600001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherSage Publications incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDepressionen_US
dc.subjectTreatment-Resistant Depressionen_US
dc.subjectDeep Learningen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectEegen_US
dc.subjectElectroencephalographyen_US
dc.titleDeep Learning-Based Artificial Intelligence Can Differentiate Treatment-Resistant and Responsive Depression Cases With High Accuracyen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationd7a05184-8649-4d7a-9ede-47416afad38e
relation.isAuthorOfPublication.latestForDiscoveryd7a05184-8649-4d7a-9ede-47416afad38e

Files