MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Deep Learning-Based Artificial Intelligence Can Differentiate Treatment-Resistant and Responsive Depression Cases With High Accuracy

dc.authorid Turk, Omer/0000-0002-0060-1880
dc.authorid Erguzel, Turker/0000-0001-8438-6542
dc.authorid Farhad, Shams/0000-0003-0591-2765
dc.authorwosid Türk, Ömer/Aai-6751-2020
dc.authorwosid Erguzel, Turker/G-2774-2019
dc.authorwosid Tarhan, K./R-5911-2019
dc.authorwosid Farhad, Shams/Hhz-8838-2022
dc.contributor.author Metin, Sinem Zeynep
dc.contributor.author Uyulan, Caglar
dc.contributor.author Farhad, Shams
dc.contributor.author Erguzel, Tuerker Tekin
dc.contributor.author Turk, Omer
dc.contributor.author Metin, Baris
dc.contributor.author Tarhan, Nevzat
dc.contributor.author Türk, Ömer
dc.contributor.other Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
dc.date.accessioned 2025-02-15T19:39:26Z
dc.date.available 2025-02-15T19:39:26Z
dc.date.issued 2025
dc.department Artuklu University en_US
dc.department-temp [Metin, Sinem Zeynep; Tarhan, Nevzat] Uskudar Univ, Dept Psychiat, Istanbul, Turkiye; [Uyulan, Caglar] Katip Celebi Univ, Dept Mech Engn, Izmir, Turkiye; [Farhad, Shams] Uskudar Univ, Dept Neurosci, Istanbul, Turkiye; [Erguzel, Tuerker Tekin] Uskudar Univ, Fac Engn & Nat Sci, Dept Software Engn, Istanbul, Turkiye; [Turk, Omer] Mardin Artuklu Univ, Dept Comp Technol, Mardin, Turkiye; [Metin, Baris] Uskudar Univ, Med Fac, Neurol Dept, Istanbul, Turkiye; [Cerezci, Onder] Uskudar Univ, Fac Hlth Sci, Dept Physioterapy & Rehabil, Istanbul, Turkiye en_US
dc.description.abstract Background: Although there are many treatment options available for depression, a large portion of patients with depression are diagnosed with treatment-resistant depression (TRD), which is characterized by an inadequate response to antidepressant treatment. Identifying the TRD population is crucial in terms of saving time and resources in depression treatment. Recently several studies employed various methods on EEG datasets for automatic depression detection or treatment outcome prediction. However, no previous study has used the deep learning (DL) approach and EEG signals for detecting treatment resistance. Method: 77 patients with TRD, 43 patients with non-TRD, and 40 healthy controls were compared using GoogleNet convolutional neural network and DL on EEG data. Additionally, Class Activation Maps (CAMs) acquired from the TRD and non-TRD groups were used to obtain distinctive regions for classification. Results: GoogleNet classified the healthy controls and non-TRD group with 88.43%, the healthy controls and TRD subjects with 89.73%, and the TRD and non-TRD group with 90.05% accuracy. The external validation accuracy for the TRD-non-TRD classification was 73.33%. Finally, the CAM analysis revealed that the TRD group contained dominant features in class detection of deep learning architecture in almost all electrodes. Limitations: Our study is limited by the moderate sample size of clinical groups and the retrospective nature of the study. Conclusion: These findings suggest that EEG-based deep learning can be used to classify treatment resistance in depression and may in the future prove to be a useful tool in psychiatry practice to identify patients who need more vigorous intervention. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 1
dc.identifier.doi 10.1177/15500594241273181
dc.identifier.endpage 130 en_US
dc.identifier.issn 1550-0594
dc.identifier.issn 2169-5202
dc.identifier.issue 2 en_US
dc.identifier.pmid 39251228
dc.identifier.scopus 2-s2.0-85203512466
dc.identifier.scopusquality Q2
dc.identifier.startpage 119 en_US
dc.identifier.uri https://doi.org/10.1177/15500594241273181
dc.identifier.volume 56 en_US
dc.identifier.wos WOS:001308907600001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Sage Publications inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject Depression en_US
dc.subject Treatment-Resistant Depression en_US
dc.subject Deep Learning en_US
dc.subject Convolutional Neural Network en_US
dc.subject Eeg en_US
dc.subject Electroencephalography en_US
dc.title Deep Learning-Based Artificial Intelligence Can Differentiate Treatment-Resistant and Responsive Depression Cases With High Accuracy en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication d7a05184-8649-4d7a-9ede-47416afad38e
relation.isAuthorOfPublication.latestForDiscovery d7a05184-8649-4d7a-9ede-47416afad38e
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files