Enhancing Vehicle Fault Diagnosis Through Multi-View Sound Analysis: Integrating Scalograms and Spectrograms in a Deep Learning Framework

dc.contributor.author Akbalik, Ferit
dc.contributor.author Yildiz, Abdulnasir
dc.contributor.author Ertugrul, Omer Faruk
dc.contributor.author Zan, Hasan
dc.contributor.author Zan, Hasan
dc.contributor.other 08.01. Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
dc.contributor.other 08. Faculty of Engineering and Architecture / Mühendislik Mimarlık Fakültesi
dc.contributor.other 01. Mardin Artuklu University / Mardin Artuklu Üniversitesi
dc.date.accessioned 2025-02-15T19:36:47Z
dc.date.available 2025-02-15T19:36:47Z
dc.date.issued 2025
dc.description.abstract This study presents a comprehensive framework for vehicle fault diagnosis using engine sound signals, leveraging deep learning models and a multi-view approach. Traditional methods for vehicle fault diagnosis often rely on the expertise of mechanics or diagnostic tools, which can be costly, time-consuming, and may not always provide accurate results. To address these limitations, we propose CarFaultNet, a multi-view model that processes both scalograms and spectrograms simultaneously to capture complementary information from these time-frequency representations. Our approach incorporates transfer learning with pretrained convolutional neural networks, including AlexNet, GoogLeNet, ShuffleNet, SqueezeNet, and MobileNet v2, as well as CarFaultNet, which combines two MobileNet networks. The results demonstrate that CarFaultNet outperforms traditional machine learning methods and single-view deep learning models, achieving a precision of 95.32%, recall of 94.83%, F1-score of 94.99%, and accuracy of 95.00%. Class activation mapping visualizations provide valuable insights into the model's decision-making process, highlighting the regions of the input images that are most influential for the classification of different vehicle faults. By leveraging a large, diverse dataset encompassing various vehicle models and real-world operating conditions, our approach addresses the drawbacks of previous studies and demonstrates the potential of deep learning for practical and effective vehicle fault diagnosis. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/s11760-024-03746-5
dc.identifier.issn 1863-1703
dc.identifier.issn 1863-1711
dc.identifier.scopus 2-s2.0-85214084419
dc.identifier.uri https://doi.org/10.1007/s11760-024-03746-5
dc.identifier.uri https://hdl.handle.net/20.500.12514/6112
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Vehicle Fault Detection en_US
dc.subject Pretrained Models en_US
dc.subject Mobilenet en_US
dc.subject Engine Sound en_US
dc.subject Scalogram en_US
dc.subject Spectrogram, Class Activation Mapping en_US
dc.title Enhancing Vehicle Fault Diagnosis Through Multi-View Sound Analysis: Integrating Scalograms and Spectrograms in a Deep Learning Framework en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 59251953800
gdc.author.scopusid 36695480300
gdc.author.scopusid 55293781400
gdc.author.scopusid 57207469878
gdc.author.wosid Zan, Hasan/AAF-2775-2019
gdc.author.wosid ERTUGRUL, Ömer/F-7057-2015
gdc.author.wosid YILDIZ, ABDULNASIR/IZQ-2323-2023
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp [Akbalik, Ferit] Batman Univ, Social Sci Vocat Sch, Batman, Turkiye; [Yildiz, Abdulnasir] Dicle Univ, Dept Elect & Elect Engn, Diyarbakir, Turkiye; [Ertugrul, Omer Faruk] Batman Univ, Dept Elect & Elect Engn, Batman, Turkiye; [Zan, Hasan] Mardin Artuklu Univ, Dept Comp Engn, Mardin, Turkiye en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 19 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.wos WOS:001389241600005
gdc.openalex.fwci 2.521
gdc.scopus.citedcount 4
gdc.wos.citedcount 4
relation.isAuthorOfPublication b6be3e7d-3260-4abd-bb65-c5dae94c0182
relation.isAuthorOfPublication.latestForDiscovery b6be3e7d-3260-4abd-bb65-c5dae94c0182
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication b4a7a54e-df38-44d5-9f03-ab3ce38ad8a8
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files