MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Basic Red 18 and Remazol Brilliant Blue R biosorption using Russula brevipes, Agaricus augustus, Fomes fomentarius

Loading...
Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Water Practice and Technology

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

In this study, the adsorption abilities of Russula brevipes (RB), Agaricus augustus (AA), and Fomes fomentarius (FF) were evaluated in Basic Red 18 (BR18) and Remazol Brilliant Blue R (RBBR) biosorption from textile effluent. The adsorbents were characterized via Scanning Electron Microscopy (SEM), Energy Dispersive Spectrometer (SEM-EDS), and Fourier transform infrared spectroscopy (FT/IR). Fomes fomentarius presented a low sorption capacity contrary to the two other fungi (RB and AA). RB and AA were selected as potential adsorbents for BR18 and RBBR, respectively. The maximum BR18 removal efficiencies for 10, 25, and 50 mg/L were obtained after 60 min to be 90, 88, and 86%, respectively. The RBBR adsorption efficiencies were 96.4, 96, and 90% for dye concentrations of 10, 25, and 50 mg/L. The adsorption of BR18 onto the RB biomass followed the Freundlich isotherm, while Langmuir is the best isotherm for RBBR sorption’s elucidation onto AA fungus biomass. The removal of BR18 by BR biomass was found to follow the pseudo-second order. In contrast, the adsorption of RBBR onto the AA biomass followed Lagergren’s pseudo-first order. For both adsorbents, the adsorption was exothermic, feasible, and spontaneous in nature. Finally, the dyes’ biosorption process was perfectly achieved onto fungi biomass via physisorption

Description

Keywords

Basic Red 18, biomass of fungi, biosorption, Remazol Brilliant Blue R

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Water Practice and Technology

Volume

17

Issue

3

Start Page

749

End Page

762