MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Silver Nanoparticles for Anticancer and Antibacterial Therapy: a Biogenic and Easy Production Strategy

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-v C H verlag Gmbh

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Metal nanoparticles are very valuable products due to their wide range of uses. Among these silver nanoparticles are beneficial products used in many fields, especially in medicine, due to their antibacterial properties. This research aimed to produce silver nanoparticles (Ag NPs) that are both affordable and environmentally friendly. For this purpose, Ag NPs were quickly obtained from domestic waste components of the carrot plant (Daucus carota L.). The UV-vis spectrophotometric, TEM, AFM, FE-SEM, STEM, EDX, XRD, and DLS analyses were performed to determine the properties of the obtained Ag NPs. It has been found that their surface charge is -21.8 mV, with a maximum absorbance at a wavelength of 421.37 nm, spherical appearance, and an average size distribution of 85.41 nm. The anticancer and antibacterial activities of the produced Ag NPs were investigated by MTT and microdilution. The synthesized Ag NPs showed the most significant antimicrobial effect on Pseudomonas aeruginosa ATCC 27833 with microdilution and low concentration. However, they were also determined to be effective on Bacillus subtilis ATCC 11774 and on Candida albicans ATCC 10231 pathogenic strains. In fact, the effective concentrations of Ag NPs on these strains were significantly lower than the antibiotics used. Furthermore, aside from exhibiting a superior anticancer impact on CaCO-2 cancer cells, it was established that Ag NPs also had remarkable efficacy in inhibiting U118 and Skov-3 cancer cells.

Description

Aliyev, Elvin/0000-0003-3755-5846

Keywords

Ag Nps, Anticancer, Antimicrobial, Carrot, <Italic>Daucus Carota</Italic> L., Green Synthesis

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

Q3

Source

Volume

10

Issue

3

Start Page

End Page