Comparison of Machine Learning Algorithms for Automatic Prediction of Alzheimer Disease
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Wolters Kluwer Health
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Background: Alzheimer disease is a progressive neurological disorder marked by irreversible memory loss and cognitive decline. Traditional diagnostic tools, such as intracranial volume assessments, electroencephalography (EEG) signals, and brain magnetic resonance imaging (MRI), have shown utility in detecting the disease. However, artificial intelligence (AI) offers promise for automating this process, potentially enhancing diagnostic accuracy and accessibility. Methods: In this study, various machine learning models were used to detect Alzheimer disease, including K-nearest neighbor regression, support vector machines (SVM), AdaBoost regression, and logistic regression. A neural network was constructed and validated using data from 150 participants in the University of Washington's Alzheimer's Disease Research Center (Open Access Imaging Studies Series [OASIS] dataset). Cross-validation was also performed on the Alzheimer Disease Neuroimaging Initiative (ADNI) dataset to assess the robustness of the models. Results: Among the models tested, K-nearest neighbor regression achieved the highest accuracy, reaching 97.33%. The cross-validation on the ADNI dataset further confirmed the effectiveness of the models, demonstrating satisfactory results in screening and diagnosing Alzheimer disease in a community-based sample. Conclusion: The findings indicate that AI-based models, particularly K-nearest neighbor regression, provide promising accuracy for the early detection of Alzheimer disease. This approach has potential for further development into practical diagnostic tools that could be applied in clinical and community settings. © 2024, the Chinese Medical Association. This is an open access article under the CC BY-NC-ND license.
Description
Keywords
Alzheimer Disease, Artificial Intelligence, Machine Learning, Magnetic Resonance Imaging, Neural Network
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q2
Scopus Q
Q1
Source
Journal of the Chinese Medical Association
Volume
88
Issue
2
Start Page
98
End Page
107