Etiology of Postharvest Fungal Decay in Kumquat: A Polyphasic Approach Integrating Aggressiveness, IPBS and SCOT Fingerprinting, and Multilocus Phylogeny

No Thumbnail Available

Date

2026

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

As the global popularity of kumquat (Fortunella spp.; syn. Citrus japonica) continues to rise, knowledge of the pathogens responsible for postharvest losses remains limited. This study presents the first etiological investigation of postharvest fungal decay in kumquat, using a multi-regional survey and polyphasic characterization. A pathogenic complex responsible for postharvest decay was identified on this host for the first time, consisting of Alternaria alternata (n = 23), Geotrichum citri-aurantii (n =17), Penicillium digitatum (n = 30), P. italicum (n = 8), and P. expansum (n = 4). Identification combined morphological characterization with high-resolution molecular fingerprinting using start codon targeted (SCoT 32) and inter-primer binding site (iPBS 2395) markers, yielding polymorphic profiles that provided clear species-level discrimination consistent with multilocus phylogenetic analysis. In vitro assays identified distinct thermal optima for each pathogen. Geotrichum citri-aurantii growth was maximal at 30 degrees C, whereas P. expansum grew optimally at 20 degrees C. The remaining species-P. digitatum, P. italicum, and A. alternata-all achieved maximum growth at 25 degrees C, although P. italicum demonstrated a broad optimal range spanning from 20 to 25 degrees C. Aggressiveness varied among the pathogens, with P. digitatum and A. alternata being the most aggressive, followed by G. citri-aurantii and P. expansum, while P. italicum was the least aggressive. This study establishes the first pathogenic profile for kumquat decay, providing a framework for evidence-based postharvest management. The demonstrated efficiency of SCoT 32 and iPBS 2395 markers highlights their value as powerful, rapid, and cost-effective tools for pathogen surveillance and taxonomic resolution in postharvest pathology.

Description

Keywords

Fortunella Margarita, Citrus Japonica, Postharvest Pathology, Fungal Pathogens, Molecular Identification, Food Spoilage

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Postharvest Biology and Technology

Volume

233

Issue

Start Page

End Page

PlumX Metrics
Citations

Scopus : 0

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo