Improving Accuracy Through Preprocessing and Data Augmentation Techniques with a Deep Learning-Based Approach for Arrhythmia Detection

dc.contributor.author Aslan, Emrah
dc.contributor.author Ozupak, Yildirim
dc.date.accessioned 2025-10-15T16:07:41Z
dc.date.available 2025-10-15T16:07:41Z
dc.date.issued 2025
dc.description.abstract Arrhythmia detection plays a critical role in the early diagnosis and management of cardiovascular diseases. In this study, we propose a deep learning-based model for arrhythmia classification using advanced preprocessing and data augmentation techniques. The proposed model is evaluated on the MIT-BIH Arrhythmia Dataset and the PTB Diagnostic ECG Dataset and achieves 98% and 95% accuracy rates, respectively. These results demonstrate the strong ability of the model to classify complex heartbeat patterns, achieving higher accuracy, precision, sensitivity, and F1 score compared to existing methods. The model uses a convolutional neural network (CNN) architecture trained on pre-processed ECG signals with data segmented into individual heartbeats. Data augmentation techniques are applied to reduce data imbalances and improve the generalization ability of the model. Experimental results highlight that the model provides a significant increase in accuracy rates over traditional methods. The results of this study highlight the potential of deep learning architectures in biomedical signal analysis, especially for realtime arrhythmia detection. This approach offers promising potential for clinical applications by enabling higher diagnostic accuracy and timely intervention in cardiovascular healthcare. en_US
dc.identifier.doi 10.30880/ijie.2025.17.05.029
dc.identifier.issn 2229-838X
dc.identifier.uri https://doi.org/10.30880/ijie.2025.17.05.029
dc.identifier.uri https://hdl.handle.net/20.500.12514/9817
dc.language.iso en en_US
dc.publisher Univ Tun Hussein onn Malaysia en_US
dc.relation.ispartof International Journal of Integrated Engineering en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Arrhythmia Detection en_US
dc.subject Deep Learning en_US
dc.subject Convolutional Neural Networks en_US
dc.subject (CNN) en_US
dc.subject Electrocardiogram (ECG) en_US
dc.subject Data Augmentation en_US
dc.title Improving Accuracy Through Preprocessing and Data Augmentation Techniques with a Deep Learning-Based Approach for Arrhythmia Detection
dc.type Article en_US
dspace.entity.type Publication
gdc.author.wosid Aslan, Emrah/Hpg-5766-2023
gdc.author.wosid Ozupak, Yıldırm/R-9877-2018
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp [Aslan, Emrah] Mardin Artuklu Univ, Dept Compuer Engn, Mardin, Turkiye; [Ozupak, Yildirim] Dicle Univ, Silvan Vocat Sch, Diyarbakir, Turkiye en_US
gdc.description.endpage 388 en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 376 en_US
gdc.description.volume 17 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality N/A
gdc.identifier.wos WOS:001570827100028

Files