Acoustic-Based Fault Diagnosis of Electric Motors Using Mel Spectrograms and Convolutional Neural Networks
| dc.contributor.author | Uzel, Hasan | |
| dc.contributor.author | Ozupak, Yildirim | |
| dc.contributor.author | Alpsalaz, Feyyaz | |
| dc.contributor.author | Aslan, Emrah | |
| dc.contributor.author | Zaitsev, Ievgen | |
| dc.date.accessioned | 2026-02-15T21:37:34Z | |
| dc.date.available | 2026-02-15T21:37:34Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | This study presents a comprehensive deep learning framework for diagnosing acoustic faults in electric motors. The framework uses Mel spectrograms and a lightweight convolutional neural network (CNN). The method classifies three motor states, engine_good, engine_broken, and engine_heavyload, based on audio recordings from the IDMT-ISA-ELECTRIC-ENGINE dataset. To prevent data leakage and ensure a robust evaluation, the study employed file-level splitting, session separation, 5-fold cross-validation, and repeated trials. The raw audio signals were transformed into Mel spectrograms and processed through a CNN architecture that integrates convolutional, pooling, normalization, and dropout layers. Quantitative metrics, including THD, spectral entropy, and SNR, further characterize the acoustic distinctions between motor states. The proposed model achieved a test accuracy of 99.7%, outperforming or matching state-of-the-art approaches, such as ResNet-18, CRNN, and Transformer classifiers, as well as traditional MFCC-based baselines. Noise robustness and sensitivity analyses demonstrated stable performance under varying SNR conditions and preprocessing settings. Feature-importance maps revealed that low-frequency regions (0-40 Mel bins) were key discriminative components linked to physical fault mechanisms. Computational evaluation confirmed the model's real-time feasibility on embedded hardware with low latency and a modest parameter count. Though primarily validated on one motor type, external-domain testing revealed strong adaptability. Future work may incorporate transfer learning or multimodal fusion. Overall, the proposed framework provides a highly accurate, interpretable, and efficient solution for real-time motor fault diagnosis and predictive maintenance in industrial environments. | en_US |
| dc.identifier.doi | 10.1038/s41598-025-33269-z | |
| dc.identifier.issn | 2045-2322 | |
| dc.identifier.scopus | 2-s2.0-105028661846 | |
| dc.identifier.uri | https://doi.org/10.1038/s41598-025-33269-z | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12514/10304 | |
| dc.language.iso | en | en_US |
| dc.publisher | Nature Portfolio | en_US |
| dc.relation.ispartof | Scientific Reports | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Acoustic Fault Diagnosis | en_US |
| dc.subject | Mel Spectrograms | en_US |
| dc.subject | CNN | en_US |
| dc.subject | Motor Condition Monitoring | en_US |
| dc.title | Acoustic-Based Fault Diagnosis of Electric Motors Using Mel Spectrograms and Convolutional Neural Networks | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 58826043600 | |
| gdc.author.scopusid | 57200142934 | |
| gdc.author.scopusid | 59221704100 | |
| gdc.author.scopusid | 58083655800 | |
| gdc.author.scopusid | 59198121200 | |
| gdc.author.wosid | Özüpak, Yıldırım/R-8902-2018 | |
| gdc.author.wosid | Zaitsev, Ievgen/H-1187-2014 | |
| gdc.author.wosid | Alpsalaz, Feyyaz/Ldg-5760-2024 | |
| gdc.author.wosid | Uzel, Hasan/Hik-2925-2022 | |
| gdc.author.wosid | Aslan, Emrah/Hpg-5766-2023 | |
| gdc.description.department | Artuklu University | en_US |
| gdc.description.departmenttemp | [Uzel, Hasan; Alpsalaz, Feyyaz] Yozgat Bozok Univ, Akdagmadeni Vocat Sch, Yozgat, Turkiye; [Ozupak, Yildirim] Dicle Univ, Silvan Vocat Sch, Diyarbakir, Turkiye; [Aslan, Emrah] Mardin Artuklu Univ, Fac Engn & Architecture, Mardin, Turkiye; [Zaitsev, Ievgen] Natl Acad Sci Ukraine, Inst Electrodynam, Dept Theoret Elect Engn & Diagnost Elect Equipment, Beresteyskiy Ave 56, UA-03680 Kyiv, Ukraine | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.volume | 16 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.pmid | 41436569 | |
| gdc.identifier.wos | WOS:001671755100007 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.index.type | PubMed | |
| gdc.virtual.author | Aslan, Emrah | |
| relation.isAuthorOfPublication | ea96819c-4e93-4dc4-a97c-2ca74bd3f34d | |
| relation.isAuthorOfPublication.latestForDiscovery | ea96819c-4e93-4dc4-a97c-2ca74bd3f34d | |
| relation.isOrgUnitOfPublication | 39ccb12e-5b2b-4b51-b989-14849cf90cae | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 39ccb12e-5b2b-4b51-b989-14849cf90cae |
