Acoustic-Based Fault Diagnosis of Electric Motors Using Mel Spectrograms and Convolutional Neural Networks

dc.contributor.author Uzel, Hasan
dc.contributor.author Ozupak, Yildirim
dc.contributor.author Alpsalaz, Feyyaz
dc.contributor.author Aslan, Emrah
dc.contributor.author Zaitsev, Ievgen
dc.date.accessioned 2026-02-15T21:37:34Z
dc.date.available 2026-02-15T21:37:34Z
dc.date.issued 2025
dc.description.abstract This study presents a comprehensive deep learning framework for diagnosing acoustic faults in electric motors. The framework uses Mel spectrograms and a lightweight convolutional neural network (CNN). The method classifies three motor states, engine_good, engine_broken, and engine_heavyload, based on audio recordings from the IDMT-ISA-ELECTRIC-ENGINE dataset. To prevent data leakage and ensure a robust evaluation, the study employed file-level splitting, session separation, 5-fold cross-validation, and repeated trials. The raw audio signals were transformed into Mel spectrograms and processed through a CNN architecture that integrates convolutional, pooling, normalization, and dropout layers. Quantitative metrics, including THD, spectral entropy, and SNR, further characterize the acoustic distinctions between motor states. The proposed model achieved a test accuracy of 99.7%, outperforming or matching state-of-the-art approaches, such as ResNet-18, CRNN, and Transformer classifiers, as well as traditional MFCC-based baselines. Noise robustness and sensitivity analyses demonstrated stable performance under varying SNR conditions and preprocessing settings. Feature-importance maps revealed that low-frequency regions (0-40 Mel bins) were key discriminative components linked to physical fault mechanisms. Computational evaluation confirmed the model's real-time feasibility on embedded hardware with low latency and a modest parameter count. Though primarily validated on one motor type, external-domain testing revealed strong adaptability. Future work may incorporate transfer learning or multimodal fusion. Overall, the proposed framework provides a highly accurate, interpretable, and efficient solution for real-time motor fault diagnosis and predictive maintenance in industrial environments. en_US
dc.identifier.doi 10.1038/s41598-025-33269-z
dc.identifier.issn 2045-2322
dc.identifier.scopus 2-s2.0-105028661846
dc.identifier.uri https://doi.org/10.1038/s41598-025-33269-z
dc.identifier.uri https://hdl.handle.net/20.500.12514/10304
dc.language.iso en en_US
dc.publisher Nature Portfolio en_US
dc.relation.ispartof Scientific Reports en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Acoustic Fault Diagnosis en_US
dc.subject Mel Spectrograms en_US
dc.subject CNN en_US
dc.subject Motor Condition Monitoring en_US
dc.title Acoustic-Based Fault Diagnosis of Electric Motors Using Mel Spectrograms and Convolutional Neural Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 58826043600
gdc.author.scopusid 57200142934
gdc.author.scopusid 59221704100
gdc.author.scopusid 58083655800
gdc.author.scopusid 59198121200
gdc.author.wosid Özüpak, Yıldırım/R-8902-2018
gdc.author.wosid Zaitsev, Ievgen/H-1187-2014
gdc.author.wosid Alpsalaz, Feyyaz/Ldg-5760-2024
gdc.author.wosid Uzel, Hasan/Hik-2925-2022
gdc.author.wosid Aslan, Emrah/Hpg-5766-2023
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp [Uzel, Hasan; Alpsalaz, Feyyaz] Yozgat Bozok Univ, Akdagmadeni Vocat Sch, Yozgat, Turkiye; [Ozupak, Yildirim] Dicle Univ, Silvan Vocat Sch, Diyarbakir, Turkiye; [Aslan, Emrah] Mardin Artuklu Univ, Fac Engn & Architecture, Mardin, Turkiye; [Zaitsev, Ievgen] Natl Acad Sci Ukraine, Inst Electrodynam, Dept Theoret Elect Engn & Diagnost Elect Equipment, Beresteyskiy Ave 56, UA-03680 Kyiv, Ukraine en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 16 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.pmid 41436569
gdc.identifier.wos WOS:001671755100007
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.virtual.author Aslan, Emrah
relation.isAuthorOfPublication ea96819c-4e93-4dc4-a97c-2ca74bd3f34d
relation.isAuthorOfPublication.latestForDiscovery ea96819c-4e93-4dc4-a97c-2ca74bd3f34d
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery 39ccb12e-5b2b-4b51-b989-14849cf90cae

Files