Radiologic Severity Index Can Be Used To Predict Mortality Risk in Patients With Covid-19

dc.contributor.author Sahutoglu, Elif
dc.contributor.author Kabak, Mehmet
dc.contributor.author Cil, Baris
dc.contributor.author Atay, Kadri
dc.contributor.author Peker, Ahmet
dc.contributor.author Guler, Suekran
dc.contributor.author Sahutoglu, Tuncay
dc.contributor.other Department of Internal Medical Sciences / Dahili Tıp Bilimleri Bölümü
dc.contributor.other 10. Faculty of Medicine / Tıp Fakültesi
dc.contributor.other 01. Mardin Artuklu University / Mardin Artuklu Üniversitesi
dc.date.accessioned 2025-02-15T19:36:59Z
dc.date.available 2025-02-15T19:36:59Z
dc.date.issued 2024
dc.description Yilmaz Kara, Bilge/0000-0003-2690-4932; PEKER, AHMET/0000-0002-4913-6860; kabak, mehmet/0000-0003-4781-1751; SAHIN, AHMET/0000-0002-8377-8293; TAHTABASI, MEHMET/0000-0001-9668-8062 en_US
dc.description.abstract Introduction: Pneumonia is a common symptom of coronavirus disease-2019 (COVID-19), and this study aimed to determine how analyzing initial thoracic computerized-tomography (CT) scans using semi-quantitative methods could be used to predict the outcomes for hospitalized patients. Materials and Methods: This study looked at previously collected data from adult patients who were hospitalized with a positive test for severe acute respiratory syndrome coronavirus-2 and had CT scans of their thorax at the time of presentation. The CT scans were evaluated for the extent of lung involvement using a semi-quantitative scoring system ranging from 0 to 72. The researchers then analyzed whether CT score could be used to predict outcomes. Results: The study included 124 patients, 55 being females, with a mean age of 46.13 years and an average duration of hospitalization of 11.69 days. Twelve patients (9.6%) died within an average of 17.2 days. The non-surviving patients were significantly older, had more underlying health conditions, and higher CT scores than the surviving patients. After taking age and comorbidities into account, each increase in CT score was associated with a 1.048 increase in the risk of mortality. CT score had a good ability to predict mortality, with an area under the curve of 0.857 and a sensitivity of 75% and specificity of 85.7% at a cut-off point of 25.5. Conclusion: Radiologic severity index, which is calculated using a semi-quantitative CT scoring system, can be used to predict the mortality of COVID-19 patients at the time of their initial hospitalization. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.5578/tt.202404994
dc.identifier.issn 0494-1373
dc.identifier.scopus 2-s2.0-85213517051
dc.identifier.uri https://doi.org/10.5578/tt.202404994
dc.identifier.uri https://hdl.handle.net/20.500.12514/6135
dc.language.iso en en_US
dc.publisher Turkish Assoc Tuberculosis & Thorax en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Covid-19 en_US
dc.subject Death en_US
dc.subject Pneumonia en_US
dc.subject Ct Scan en_US
dc.title Radiologic Severity Index Can Be Used To Predict Mortality Risk in Patients With Covid-19 en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Yilmaz Kara, Bilge/0000-0003-2690-4932
gdc.author.id PEKER, AHMET/0000-0002-4913-6860
gdc.author.id kabak, mehmet/0000-0003-4781-1751
gdc.author.id SAHIN, AHMET/0000-0002-8377-8293
gdc.author.id TAHTABASI, MEHMET/0000-0001-9668-8062
gdc.author.institutional Kabak, Mehmet
gdc.author.scopusid 57094102800
gdc.author.scopusid 57210705197
gdc.author.scopusid 57210698423
gdc.author.scopusid 36499005500
gdc.author.scopusid 57390624900
gdc.author.scopusid 57283006500
gdc.author.scopusid 55764603400
gdc.author.wosid Peker, Ahmet/AAI-3976-2020
gdc.author.wosid kabak, mehmet/LRB-6648-2024
gdc.author.wosid Sahutoglu, Tuncay/J-5587-2019
gdc.author.wosid Tahtabasi, Mehmet/JKI-2486-2023
gdc.author.wosid Yılmaz Kara, Bilge/AAC-3837-2020
gdc.author.wosid Şahin, Ahmet/JWP-6263-2024
gdc.author.wosid Yilmaz Kara, Bilge/IQW-7851-2023
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp [Sahutoglu, Elif; Olcen, Merhamet; Sahin, Ahmet; Esmer, Fatih; Kara, Ekrem; Sahutoglu, Tuncay] Sanliurfa Educ & Res Hosp, Clin Pulm Dis, Sanliurfa, Turkiye; [Kabak, Mehmet; Sahutoglu, Tuncay] Mardin Artuklu Univ, Fac Med, Dept Pulm Dis, Mardin, Turkiye; [Cil, Baris] Mardin Educ & Res Hosp Dermatol Clin, Mardin, Turkiye; [Atay, Kadri] Mardin Educ & Res Hosp Dermatol Clin, Mardin, Turkiye; [Peker, Ahmet] Sisli Hamidiye Etfal Educ & Res Hosp, Istanbul, Turkiye; [Guler, Suekran] Sanliurfa Educ & Res Hosp, Clin Radiol, Sanliurfa, Turkiye; [Tahtabasi, Mehmet] Mehmet Akif Inan Educ & Res Hosp, Clin Radiol, Sanliurfa, Turkiye; [Kara, Bilge Yilmaz] Recep Tayyip Erdogan Univ, Fac Med, Dept Pulm Dis, Rize, Turkiye; [Eldes, Tugba] Recep Tayyip Erdogan Univ, Fac Med, Dept Radiol, Rize, Turkiye; [Sahin, Ahmet; Esmer, Fatih] Mehmet Akif Inan Res & Educ Hosp, Clin Infect Dis, Sanliurfa, Turkiye; [Kara, Ekrem] Recep Tayyip Erdogan Univ, Fac Med, Dept Internal Med, Div Nephrol, Rize, Turkiye; [Sahutoglu, Tuncay] Univ Hlth Sci, Mehmet Akif Inan Educ & Res Hosp, Nephrol Unit, Sanliurfa, Turkiye en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.volume 72 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.identifier.pmid 39745227
gdc.identifier.trdizinid 1287036
gdc.identifier.wos WOS:001397071400005
gdc.openalex.fwci 0.483
gdc.scopus.citedcount 1
gdc.wos.citedcount 0
relation.isAuthorOfPublication 3bee1381-bfd1-433d-89d1-f982d2861c39
relation.isAuthorOfPublication.latestForDiscovery 3bee1381-bfd1-433d-89d1-f982d2861c39
relation.isOrgUnitOfPublication 8e5859b2-b0cf-4e18-9816-a07bcf1aa7ca
relation.isOrgUnitOfPublication 3f27f943-1869-4252-af6a-9ec8b114c727
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery 8e5859b2-b0cf-4e18-9816-a07bcf1aa7ca

Files