MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Radiologic Severity Index Can Be Used To Predict Mortality Risk in Patients With Covid-19

dc.authorid Yilmaz Kara, Bilge/0000-0003-2690-4932
dc.authorid PEKER, AHMET/0000-0002-4913-6860
dc.authorid kabak, mehmet/0000-0003-4781-1751
dc.authorid SAHIN, AHMET/0000-0002-8377-8293
dc.authorid TAHTABASI, MEHMET/0000-0001-9668-8062
dc.authorscopusid 57094102800
dc.authorscopusid 57210705197
dc.authorscopusid 57210698423
dc.authorscopusid 36499005500
dc.authorscopusid 57390624900
dc.authorscopusid 57283006500
dc.authorscopusid 55764603400
dc.authorwosid Peker, Ahmet/AAI-3976-2020
dc.authorwosid kabak, mehmet/LRB-6648-2024
dc.authorwosid Sahutoglu, Tuncay/J-5587-2019
dc.authorwosid Tahtabasi, Mehmet/JKI-2486-2023
dc.authorwosid Yılmaz Kara, Bilge/AAC-3837-2020
dc.authorwosid Şahin, Ahmet/JWP-6263-2024
dc.authorwosid Yilmaz Kara, Bilge/IQW-7851-2023
dc.contributor.author Kabak, Mehmet
dc.contributor.author Kabak, Mehmet
dc.contributor.author Cil, Baris
dc.contributor.author Atay, Kadri
dc.contributor.author Peker, Ahmet
dc.contributor.author Guler, Suekran
dc.contributor.author Sahutoglu, Tuncay
dc.contributor.other Department of Internal Medical Sciences / Dahili Tıp Bilimleri Bölümü
dc.date.accessioned 2025-02-15T19:36:59Z
dc.date.available 2025-02-15T19:36:59Z
dc.date.issued 2024
dc.department Artuklu University en_US
dc.department-temp [Sahutoglu, Elif; Olcen, Merhamet; Sahin, Ahmet; Esmer, Fatih; Kara, Ekrem; Sahutoglu, Tuncay] Sanliurfa Educ & Res Hosp, Clin Pulm Dis, Sanliurfa, Turkiye; [Kabak, Mehmet; Sahutoglu, Tuncay] Mardin Artuklu Univ, Fac Med, Dept Pulm Dis, Mardin, Turkiye; [Cil, Baris] Mardin Educ & Res Hosp Dermatol Clin, Mardin, Turkiye; [Atay, Kadri] Mardin Educ & Res Hosp Dermatol Clin, Mardin, Turkiye; [Peker, Ahmet] Sisli Hamidiye Etfal Educ & Res Hosp, Istanbul, Turkiye; [Guler, Suekran] Sanliurfa Educ & Res Hosp, Clin Radiol, Sanliurfa, Turkiye; [Tahtabasi, Mehmet] Mehmet Akif Inan Educ & Res Hosp, Clin Radiol, Sanliurfa, Turkiye; [Kara, Bilge Yilmaz] Recep Tayyip Erdogan Univ, Fac Med, Dept Pulm Dis, Rize, Turkiye; [Eldes, Tugba] Recep Tayyip Erdogan Univ, Fac Med, Dept Radiol, Rize, Turkiye; [Sahin, Ahmet; Esmer, Fatih] Mehmet Akif Inan Res & Educ Hosp, Clin Infect Dis, Sanliurfa, Turkiye; [Kara, Ekrem] Recep Tayyip Erdogan Univ, Fac Med, Dept Internal Med, Div Nephrol, Rize, Turkiye; [Sahutoglu, Tuncay] Univ Hlth Sci, Mehmet Akif Inan Educ & Res Hosp, Nephrol Unit, Sanliurfa, Turkiye en_US
dc.description Yilmaz Kara, Bilge/0000-0003-2690-4932; PEKER, AHMET/0000-0002-4913-6860; kabak, mehmet/0000-0003-4781-1751; SAHIN, AHMET/0000-0002-8377-8293; TAHTABASI, MEHMET/0000-0001-9668-8062 en_US
dc.description.abstract Introduction: Pneumonia is a common symptom of coronavirus disease-2019 (COVID-19), and this study aimed to determine how analyzing initial thoracic computerized-tomography (CT) scans using semi-quantitative methods could be used to predict the outcomes for hospitalized patients. Materials and Methods: This study looked at previously collected data from adult patients who were hospitalized with a positive test for severe acute respiratory syndrome coronavirus-2 and had CT scans of their thorax at the time of presentation. The CT scans were evaluated for the extent of lung involvement using a semi-quantitative scoring system ranging from 0 to 72. The researchers then analyzed whether CT score could be used to predict outcomes. Results: The study included 124 patients, 55 being females, with a mean age of 46.13 years and an average duration of hospitalization of 11.69 days. Twelve patients (9.6%) died within an average of 17.2 days. The non-surviving patients were significantly older, had more underlying health conditions, and higher CT scores than the surviving patients. After taking age and comorbidities into account, each increase in CT score was associated with a 1.048 increase in the risk of mortality. CT score had a good ability to predict mortality, with an area under the curve of 0.857 and a sensitivity of 75% and specificity of 85.7% at a cut-off point of 25.5. Conclusion: Radiologic severity index, which is calculated using a semi-quantitative CT scoring system, can be used to predict the mortality of COVID-19 patients at the time of their initial hospitalization. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.citationcount 0
dc.identifier.doi 10.5578/tt.202404994
dc.identifier.issn 0494-1373
dc.identifier.issue 4 en_US
dc.identifier.pmid 39745227
dc.identifier.scopus 2-s2.0-85213517051
dc.identifier.scopusquality Q4
dc.identifier.trdizinid 1287036
dc.identifier.uri https://doi.org/10.5578/tt.202404994
dc.identifier.uri https://hdl.handle.net/20.500.12514/6135
dc.identifier.volume 72 en_US
dc.identifier.wos WOS:001397071400005
dc.language.iso en en_US
dc.publisher Turkish Assoc Tuberculosis & Thorax en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 0
dc.subject Covid-19 en_US
dc.subject Death en_US
dc.subject Pneumonia en_US
dc.subject Ct Scan en_US
dc.title Radiologic Severity Index Can Be Used To Predict Mortality Risk in Patients With Covid-19 en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication 3bee1381-bfd1-433d-89d1-f982d2861c39
relation.isAuthorOfPublication.latestForDiscovery 3bee1381-bfd1-433d-89d1-f982d2861c39
relation.isOrgUnitOfPublication 8e5859b2-b0cf-4e18-9816-a07bcf1aa7ca
relation.isOrgUnitOfPublication.latestForDiscovery 8e5859b2-b0cf-4e18-9816-a07bcf1aa7ca

Files