MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Radiologic Severity Index Can Be Used To Predict Mortality Risk in Patients With Covid-19

dc.authoridYilmaz Kara, Bilge/0000-0003-2690-4932
dc.authoridPEKER, AHMET/0000-0002-4913-6860
dc.authoridkabak, mehmet/0000-0003-4781-1751
dc.authoridSAHIN, AHMET/0000-0002-8377-8293
dc.authoridTAHTABASI, MEHMET/0000-0001-9668-8062
dc.authorscopusid57094102800
dc.authorscopusid57210705197
dc.authorscopusid57210698423
dc.authorscopusid36499005500
dc.authorscopusid57390624900
dc.authorscopusid57283006500
dc.authorscopusid55764603400
dc.authorwosidPeker, Ahmet/AAI-3976-2020
dc.authorwosidkabak, mehmet/LRB-6648-2024
dc.authorwosidSahutoglu, Tuncay/J-5587-2019
dc.authorwosidTahtabasi, Mehmet/JKI-2486-2023
dc.authorwosidYılmaz Kara, Bilge/AAC-3837-2020
dc.authorwosidŞahin, Ahmet/JWP-6263-2024
dc.authorwosidYilmaz Kara, Bilge/IQW-7851-2023
dc.contributor.authorSahutoglu, Elif
dc.contributor.authorKabak, Mehmet
dc.contributor.authorCil, Baris
dc.contributor.authorAtay, Kadri
dc.contributor.authorPeker, Ahmet
dc.contributor.authorGuler, Suekran
dc.contributor.authorSahutoglu, Tuncay
dc.date.accessioned2025-02-15T19:36:59Z
dc.date.available2025-02-15T19:36:59Z
dc.date.issued2024
dc.departmentArtuklu Universityen_US
dc.department-temp[Sahutoglu, Elif; Olcen, Merhamet; Sahin, Ahmet; Esmer, Fatih; Kara, Ekrem; Sahutoglu, Tuncay] Sanliurfa Educ & Res Hosp, Clin Pulm Dis, Sanliurfa, Turkiye; [Kabak, Mehmet; Sahutoglu, Tuncay] Mardin Artuklu Univ, Fac Med, Dept Pulm Dis, Mardin, Turkiye; [Cil, Baris] Mardin Educ & Res Hosp Dermatol Clin, Mardin, Turkiye; [Atay, Kadri] Mardin Educ & Res Hosp Dermatol Clin, Mardin, Turkiye; [Peker, Ahmet] Sisli Hamidiye Etfal Educ & Res Hosp, Istanbul, Turkiye; [Guler, Suekran] Sanliurfa Educ & Res Hosp, Clin Radiol, Sanliurfa, Turkiye; [Tahtabasi, Mehmet] Mehmet Akif Inan Educ & Res Hosp, Clin Radiol, Sanliurfa, Turkiye; [Kara, Bilge Yilmaz] Recep Tayyip Erdogan Univ, Fac Med, Dept Pulm Dis, Rize, Turkiye; [Eldes, Tugba] Recep Tayyip Erdogan Univ, Fac Med, Dept Radiol, Rize, Turkiye; [Sahin, Ahmet; Esmer, Fatih] Mehmet Akif Inan Res & Educ Hosp, Clin Infect Dis, Sanliurfa, Turkiye; [Kara, Ekrem] Recep Tayyip Erdogan Univ, Fac Med, Dept Internal Med, Div Nephrol, Rize, Turkiye; [Sahutoglu, Tuncay] Univ Hlth Sci, Mehmet Akif Inan Educ & Res Hosp, Nephrol Unit, Sanliurfa, Turkiyeen_US
dc.descriptionYilmaz Kara, Bilge/0000-0003-2690-4932; PEKER, AHMET/0000-0002-4913-6860; kabak, mehmet/0000-0003-4781-1751; SAHIN, AHMET/0000-0002-8377-8293; TAHTABASI, MEHMET/0000-0001-9668-8062en_US
dc.description.abstractIntroduction: Pneumonia is a common symptom of coronavirus disease-2019 (COVID-19), and this study aimed to determine how analyzing initial thoracic computerized-tomography (CT) scans using semi-quantitative methods could be used to predict the outcomes for hospitalized patients. Materials and Methods: This study looked at previously collected data from adult patients who were hospitalized with a positive test for severe acute respiratory syndrome coronavirus-2 and had CT scans of their thorax at the time of presentation. The CT scans were evaluated for the extent of lung involvement using a semi-quantitative scoring system ranging from 0 to 72. The researchers then analyzed whether CT score could be used to predict outcomes. Results: The study included 124 patients, 55 being females, with a mean age of 46.13 years and an average duration of hospitalization of 11.69 days. Twelve patients (9.6%) died within an average of 17.2 days. The non-surviving patients were significantly older, had more underlying health conditions, and higher CT scores than the surviving patients. After taking age and comorbidities into account, each increase in CT score was associated with a 1.048 increase in the risk of mortality. CT score had a good ability to predict mortality, with an area under the curve of 0.857 and a sensitivity of 75% and specificity of 85.7% at a cut-off point of 25.5. Conclusion: Radiologic severity index, which is calculated using a semi-quantitative CT scoring system, can be used to predict the mortality of COVID-19 patients at the time of their initial hospitalization.en_US
dc.description.provenanceSubmitted by GCRIS Admin (gcris@artuklu.edu.tr) on 2025-02-15T19:36:59Z No. of bitstreams: 0en
dc.description.provenanceMade available in DSpace on 2025-02-15T19:36:59Z (GMT). No. of bitstreams: 0 Previous issue date: 2024en
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.citationcount0
dc.identifier.doi10.5578/tt.202404994
dc.identifier.issn0494-1373
dc.identifier.issue4en_US
dc.identifier.pmid39745227
dc.identifier.scopus2-s2.0-85213517051
dc.identifier.scopusqualityQ4
dc.identifier.trdizinid1287036
dc.identifier.urihttps://doi.org/10.5578/tt.202404994
dc.identifier.urihttps://hdl.handle.net/20.500.12514/6135
dc.identifier.volume72en_US
dc.identifier.wosWOS:001397071400005
dc.language.isoenen_US
dc.publisherTurkish Assoc Tuberculosis & Thoraxen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCovid-19en_US
dc.subjectDeathen_US
dc.subjectPneumoniaen_US
dc.subjectCt Scanen_US
dc.titleRadiologic Severity Index Can Be Used To Predict Mortality Risk in Patients With Covid-19en_US
dc.typeArticleen_US
dspace.entity.typePublication

Files