MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Synthesis and biological properties of axially bis − (3,4,5-trimethoxybenzyloxy) phthalocyaninato silicon (IV)

Thumbnail Image

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Sa

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

In this study, bis(3,4,5-trimethoxybenzyloxy) phthalocyaninato silicon (IV) was obtained from the reaction of 3,4,5-trimethoxybenzyl alcohol with SiPcCl 2 . This phthalocyanine was characterized using 1 H NMR, FTIR, UV - vis and mass spectra. 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, antidiabetic, deoxyribonucleic acid (DNA) cutting, biofilm inhibition, anti -microbial and antimicrobial photodynamic therapy (aPDT) activities of newly synthesized bis(3,4,5-trimethoxybenzyloxy) phthalocyaninato silicon (IV) molecule were studied. The best activities were 41.58 % at 100 mg/L for antioxidant and 41.66 % for antidiabetic at 400 mg/L concentration. The molecule degraded the biofilm matrix formed by Pseudomonas aeruginosa and Staphylococcus aureus as 78.61 % and 89.26 %, at 50 mg/L concentration, respectively. It was observed that E. coli , which was used as a model microorganism, was inhibited at a level close to 100 % even at the lowest concentration of 50 mg/L. While double strand break was observed at 50 mg/L DNA cutting activity, it was determined that DNA was reduced to nucleotides at 100 and 200 mg/L. The Pc also displayed effective antimicrobial and aPDT abilities against pathogens. With the application of aPDT, the effectiveness of antimicrobial activity increased 2 to 4 times. These increase rates are very important. The main conclusion of the study was that the newly synthesized compound exhibited various effective biological activities such as effective antioxidant, antidiabetic, DNA cleavage, antimicrobial, aPDT, biofilm inhibition and microbial cell viability inhibition.

Description

Keywords

Silicon Phthalocyanine, Fluorescence, Antioxidant, Antimicrobial, Biofilm Inhibition

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q1

Source

Volume

456

Issue

Start Page

End Page