Air Quality Forecasting Using Machine Learning: Comparative Analysis and Ensemble Strategies for Enhanced Prediction

dc.contributor.author Aslan, Emrah
dc.contributor.author Alpsalaz, Feyyaz
dc.contributor.author Aslan, Emrah
dc.contributor.other 08.01. Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
dc.contributor.other 08. Faculty of Engineering and Architecture / Mühendislik Mimarlık Fakültesi
dc.contributor.other 01. Mardin Artuklu University / Mardin Artuklu Üniversitesi
dc.date.accessioned 2025-07-02T11:46:46Z
dc.date.available 2025-07-02T11:46:46Z
dc.date.issued 2025
dc.description.abstract Air pollution poses a critical challenge to environmental sustainability, public health, and urban planning. Accurate air quality prediction is essential for devising effective management strategies and early warning systems. This study utilized a dataset comprising hourly measurements of pollutants such as PM2.5, NOx, CO, and benzene, sourced from five metal oxide sensors and a certified analyzer in a polluted urban area, totaling 9,357 records collected over one year (March 2004-February 2005) from the Kaggle Air Quality Data Set. A comprehensive comparison of ten machine learning regression models XGBoost, LightGBM, Random Forest, Gradient Boosting, CatBoost, Support Vector Regression (SVR) with Bayesian Optimization, Decision Tree, K-Nearest Neighbors (KNN), Elastic Net, and Bayesian Ridge was conducted. Model performance was enhanced through Bayesian optimization and randomized cross-validation, with stacking employed to leverage the strengths of base models. Experimental results showed that hyperparameter optimization and ensemble strategies significantly improved accuracy, with the SVR model optimized via Bayesian optimization achieving the highest performance: an R2 score of 99.94%, MAE of 0.0120, and MSE of 0.0005. These findings underscore the methodology's efficacy in precisely capturing the spatial and temporal dynamics of air pollution. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkiye (TUBITAK) en_US
dc.description.sponsorship Open access funding provided by the Scientific and Technological Research Council of Turkiye (TUBITAK). en_US
dc.identifier.doi 10.1007/s11270-025-08122-8
dc.identifier.issn 0049-6979
dc.identifier.issn 1573-2932
dc.identifier.scopus 2-s2.0-105005028103
dc.identifier.uri https://doi.org/10.1007/s11270-025-08122-8
dc.identifier.uri https://hdl.handle.net/20.500.12514/8945
dc.language.iso en en_US
dc.publisher Springer Int Publ Ag en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Air Quality Prediction en_US
dc.subject Machine Learning en_US
dc.subject Bayesian Optimization en_US
dc.subject Regression Models en_US
dc.subject Svr en_US
dc.title Air Quality Forecasting Using Machine Learning: Comparative Analysis and Ensemble Strategies for Enhanced Prediction en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57200142934
gdc.author.scopusid 59221704100
gdc.author.scopusid 58083655800
gdc.author.wosid Alpsalaz, Feyyaz/Ldg-5760-2024
gdc.author.wosid Aslan, Emrah/Hpg-5766-2023
gdc.author.wosid Ozupak, Yıldırm/R-9877-2018
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp [Ozupak, Yildirim] Dicle Univ, Dept Elect & Energy, TR-21000 Diyarbakir, Turkiye; [Alpsalaz, Feyyaz] Yozgat Bozok Univ, Dept Elect & Energy, TR-66100 Yozgat, Turkiye; [Aslan, Emrah] Mardin Artuklu Univ, Fac Engn & Architecture, Dept Comp Engn, TR-47000 Mardin, Turkiye en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.volume 236 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.wos WOS:001488590500004
gdc.scopus.citedcount 1
gdc.wos.citedcount 1
relation.isAuthorOfPublication ea96819c-4e93-4dc4-a97c-2ca74bd3f34d
relation.isAuthorOfPublication.latestForDiscovery ea96819c-4e93-4dc4-a97c-2ca74bd3f34d
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication b4a7a54e-df38-44d5-9f03-ab3ce38ad8a8
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files