Medicinal Evaluation and Molecular Docking Study of Osajin as an Anti-Inflammatory, Antioxidant, and Antiapoptotic Agent Against Sepsis-Associated Acute Kidney Injury in Rats
No Thumbnail Available
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor & Francis Ltd
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Despite efforts to find effective drugs for sepsis-associated acute kidney injury (SA-AKI), mortality rates in patients with SA-AKI have not decreased. Our study evaluated the protective effects of isoflavone osajin (OSJ) on SA-AKI in rats by targeting inflammation, oxidative stress, and apoptosis, which represent the cornerstones in the pathophysiological mechanism of SA-AKI. Polymicrobial sepsis was induced in rats via the cecal ligation and puncture (CLP) technique. Markers of oxidative stress were evaluated in kidney tissues using biochemical methods. The expression of interleukin-33 (IL-33), 8-hydroxydeoxyguanosine (8-OHdG), caspase-3, and kidney injury molecule-1 (KIM-1) was evaluated as indicators of inflammation, DNA damage, apoptosis, and SA-AKI respectively in the kidney tissues using immunohistochemical and immunofluorescent detection methods. The CLP technique significantly (p < 0.001) increased lipid peroxidation (LPO) levels and significantly (p < 0.001) decreased the activities of superoxide dismutase and catalase in kidney tissues. In the renal tissues, strong expression of IL-33, 8-OHdG, caspase-3, and KIM-1 was observed with severe degeneration and necrosis in the tubular epithelium and intense interstitial nephritis. In contrast, the administration of OSJ significantly (p < 0.001) reduced the level of LPO, markedly improved biomarkers of antioxidant status, decreased the levels of serum creatinine and urea, lowered the expression of IL-33, 8-OHdG, caspase-3, and KIM-1 and alleviated changes in renal histopathology. A promising binding score was found via a molecular docking investigation of the OSJ-binding mode with mouse IL-33 (PDB Code: 5VI4). Therefore, OSJ protects against SA-AKI by suppressing the IL-33/LPO/8-OHdG/caspase-3 pathway and improving the antioxidant system.
Description
Erol, Huseyin Serkan/0000-0002-9121-536X; Halici, Mesut/0000-0002-7473-2955
Keywords
Apoptosis, Inflammation, Osajin, Oxidative Stress, Sa-Aki
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q1
Scopus Q
Q2
Source
Renal Failure
Volume
46
Issue
2
Start Page
End Page
Google Scholar™
Sustainable Development Goals
4
QUALITY EDUCATION

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

11
SUSTAINABLE CITIES AND COMMUNITIES

12
RESPONSIBLE CONSUMPTION AND PRODUCTION

14
LIFE BELOW WATER

16
PEACE, JUSTICE AND STRONG INSTITUTIONS

17
PARTNERSHIPS FOR THE GOALS
