Effects of Ranolazine on Angiogenesis and Oxidant-Antioxidant Balance: an in Vivo Experimental Model Study

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Portfolio

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Ranolazine is known for its antiarrhythmic, antianginal, anti-ischemic properties, as well as its favorable effects on glycemic control. This study aimed to evaluate the effects of ranolazine on oxidative-antioxidative balance and angiogenesis using an in vivo experimental model. A total of 40 Ross 308 chick embryos were used and randomly divided into four groups (n = 10 per group). On the eighth day of incubation, vascular density was assessed. Following vascular evaluation, 4-5 mL of albumen was aspirated using a syringe to measure oxidative stress markers. The groups were as follows: Control, Bevacizumab (BC), Ranolazine 10(-4), and Ranolazine 10(-5). Total antioxidant capacity (TAC) levels were significantly higher in the bevacizumab group compared to the control group (p < 0.05). Similarly, oxidative stress index (OSI) levels were also significantly elevated in the bevacizumab group (p < 0.05). Both Ranolazine 10(-4) and 10(-5) groups demonstrated significantly increased TAC levels compared to the control group (p < 0.05). In terms of angiogenesis scores, bevacizumab exhibited a marked anti-angiogenic effect compared to control. However, no statistically significant difference was observed between the ranolazine groups and the control group regarding angiogenesis scores (p > 0.05). This study provides the first in vivo evidence that Ranolazine enhances total antioxidant capacity but does not influence angiogenesis in the CAM model. Future research should explore the molecular mechanisms underlying this effect.

Description

Keywords

Angiogenesis, Coronary Artery Disease, Myocardial Ischemia, Ranolazine

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo