Experimental and theoretical investigation of adsorption and inhibition properties of 2-Amino-1,3,5-triazine-4,6-dithiol against corrosion in hydrochloric acid solution on mild steel
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
In this work, 2-Amino-1,3,5-triazine-4,6-dithiol (2-ATD) as novel and high efficiency corrosion inhibitor has been investigated for mild steel (MS) corrosion in 0.5 M HCl solution using electrochemical methods, scanning electron microscopy (SEM), energy disperse X-ray spectroscopy (EDX), atomic force microscopy (AFM) and quantum chemical calculation methods. Potentiodynamic polarization (PDP) curves indicate that 2-ATD is mixed type inhibitor, corrosion inhibition efficiency increased with increasing inhibitor concentration and reached its value of 96.5%. Evolution of exposure time versus corrosion behavior of 2-ATD is examined in corrosive medium. While corrosion potential (Ecorr) shifted more negative values, polarization resistances (Rp) decreased after 120 h exposure time due to the corrosion process. H2 volume is measured in uninhibited and inhibited solutions (10 mM 2-ATD) after 120 h exposure time. Very low volume (3.6 mL cm-2) of H2 is obtained on MS electrode in inhibited solution after 120 h of exposure, indicating that 2-ATD covers the entire surface against aggressive attack and retards the both anodic dissolution of MS and cathodic hydrogen evolution reactions. The adsorption process proposal is the Langmuir isotherm which is most suitable. Adsorption and thermodynamic parameters show that 2-ATD has a strong adsorption effect onto MS surface and includes mixed adsorption style (physical and chemical). Corrosion current density increases with increasing temperature and high activation energy (Ea) proves the strong adsorption of 2-ATD on the MS surface. Anti-corrosion mechanism of 2-ATD is described more detail with the potential of zero charge method. SEM, EDX and AFM analysis support the obtained results of electrochemical methods and confirm the existence of protective layer and strong adsorption of 2-ATD on the MS surface. Chronoamperometry test shows that current densities are almost constant whole experiment in the presence of organic film. Finally, quantum chemical calculation method of 2-ATD in blank solution is performed to investigate the active sites for possible attachment with MS surface.
Description
ORCID
Keywords
Adsorption, 2-ATD, Mild steel, Corrosion inhibitor, EIS, Quantum chemical calculation
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q4
Scopus Q
Q4
Source
Journal of the Indian Chemical Society
Volume
100
Issue
10