Hybrid Deep Learning with Attention Fusion for Enhanced Colon Cancer Detection

dc.contributor.author Alpsalaz, Suheyla Demirtas
dc.contributor.author Aslan, Emrah
dc.contributor.author Ozupak, Yildirim
dc.contributor.author Alpsalaz, Feyyaz
dc.contributor.author Uzel, Hasan
dc.contributor.author Bereznychenko, Viktoria
dc.date.accessioned 2026-01-15T15:03:36Z
dc.date.available 2026-01-15T15:03:36Z
dc.date.issued 2025
dc.description.abstract This study introduces a hybrid deep learning model integrating EfficientNet-B3 and Vision Transformer with an Attention Fusion mechanism for automated colon cancer detection using the Kvasir endoscopic dataset. The model leverages EfficientNet-B3's strength in capturing fine-grained local textures and Vision Transformer's ability to model global contextual relationships. A multi-head attention-based fusion block harmonizes these features, achieving comprehensive representations and enhanced classification stability. Model optimization was guided by the Matthews Correlation Coefficient (MCC), alongside evaluations of accuracy, F1-score, and Brier Score. Experimental results demonstrate a 96.2% accuracy and an MCC of 0.961, surpassing standalone baselines and existing benchmark architectures. Cross-validation confirmed robust generalization, while Grad-CAM analyses improved interpretability by visualizing salient histopathological regions influencing predictions. Despite slight overfitting tendencies, the model maintained strong performance across all eight image classes. These findings highlight the model's ability to address limitations of single-architecture approaches by combining local and global feature extraction, offering rapid, objective, and reliable diagnostic support. The proposed framework shows significant promise for integration into computer-aided colonoscopy systems, paving the way for enhanced clinical diagnostics and reduced pathologist workload through AI-driven precision medicine. en_US
dc.identifier.doi 10.1038/s41598-025-29447-8
dc.identifier.issn 2045-2322
dc.identifier.scopus 2-s2.0-105026242284
dc.identifier.uri https://doi.org/10.1038/s41598-025-29447-8
dc.identifier.uri https://hdl.handle.net/20.500.12514/10150
dc.language.iso en en_US
dc.publisher Nature Portfolio en_US
dc.relation.ispartof Scientific Reports en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Colon Cancer en_US
dc.subject Deep Learning en_US
dc.subject Hybrid Model en_US
dc.subject Efficientnet-B3 en_US
dc.subject Vision Transformer en_US
dc.title Hybrid Deep Learning with Attention Fusion for Enhanced Colon Cancer Detection en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 60008497800
gdc.author.scopusid 58083655800
gdc.author.scopusid 57200142934
gdc.author.scopusid 59221704100
gdc.author.scopusid 58826043600
gdc.author.scopusid 57207913770
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.collaboration.industrial false
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp [Alpsalaz, Suheyla Demirtas] Minist Hlth, Akdagmadeni State Hosp, Yozgat, Turkiye; [Aslan, Emrah] Mardin Artuklu Univ, Fac Engn & Architecture, Mardin, Turkiye; [Ozupak, Yildirim] Dicle Univ, Silvan Vocat Sch, Diyarbakir, Turkiye; [Alpsalaz, Feyyaz; Uzel, Hasan] Yozgat Bozok Univ, Akdagmadeni Vocat Sch, Yozgat, Turkiye; [Bereznychenko, Viktoria] Natl Acad Sci Ukraine, Inst Electrodynam, Dept Theoret Elect Engn & Diagnost Elect Equipment, Beresteyskiy Ave 56, UA-03057 Kyiv, Ukraine en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 15 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4416773191
gdc.identifier.pmid 41315603
gdc.identifier.wos WOS:001651442500034
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5488711E-9
gdc.oaire.keywords Article
gdc.oaire.popularity 3.5084218E-9
gdc.openalex.collaboration International
gdc.opencitations.count 0
gdc.plumx.crossrefcites 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Aslan, Emrah
gdc.wos.citedcount 0
relation.isAuthorOfPublication ea96819c-4e93-4dc4-a97c-2ca74bd3f34d
relation.isAuthorOfPublication.latestForDiscovery ea96819c-4e93-4dc4-a97c-2ca74bd3f34d
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery 39ccb12e-5b2b-4b51-b989-14849cf90cae

Files