Is the Ensemble Machine Learning Model a Reliable Method for Detecting Neoplastic Infiltration of Thyroid Cartilage in Laryngeal Cancers

dc.contributor.author Can, Sermin
dc.contributor.author Turk, Omer
dc.contributor.author Ayral, Muhammed
dc.contributor.author Kozan, Gunay
dc.contributor.author Onur, Mehmet
dc.contributor.author Yagiz, Eyyup
dc.contributor.author Akdag, Mehmet
dc.date.accessioned 2025-12-15T15:46:31Z
dc.date.available 2025-12-15T15:46:31Z
dc.date.issued 2025
dc.description.abstract Background and Objectives: We aimed to apply the ensemble machine learning model to diagnose thyroid cartilage invasion detected in computer tomography (CT) images in laryngeal cancers and evaluate the diagnostic performance of the model. Materials and Methods: A total of 313 patients were divided into two groups: the cartilage invasion group and the no cartilage invasion group. At least four CT slices were randomly selected for each patient, resulting in a total of 1251 images used in the study. A total of 619 axial CT images from the no cartilage invasion group and 632 axial CT images from the cartilage invasion group were used in the study. We reviewed the CT images and histopathological diagnoses in all cases to determine the invasion positive- or negative-status as a ground truth. The ensemble model, comprising ResNet50 and MobileNet deep learning architectures, was applied to CT images. Results: The following were obtained by the ensemble model with the test dataset: area under the curve (AUC) 0.99, and accuracy 96.54%. This model demonstrates a very high level of performance in detecting thyroid cartilage invasion. Conclusions: The ensemble machine learning model is an effective method for detecting neoplastic infiltration of the thyroid cartilage. Moreover, it may be a valuable diagnostic tool for clinicians in assessing disease prognosis and determining appropriate treatment strategies in laryngeal cancers. In conclusion, this model could be integrated into future clinical practice in laryngology and head and neck surgery for the detection of cartilage neoplastic infiltration. en_US
dc.identifier.doi 10.3390/medicina61111945
dc.identifier.issn 1010-660X
dc.identifier.issn 1648-9144
dc.identifier.scopus 2-s2.0-105023123587
dc.identifier.uri https://doi.org/10.3390/medicina61111945
dc.identifier.uri https://hdl.handle.net/20.500.12514/10035
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.ispartof Medicina-Lithuania en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Ensemble en_US
dc.subject Invasion en_US
dc.subject Larynx en_US
dc.subject Machine Learning en_US
dc.subject Thyroid Cartilage en_US
dc.title Is the Ensemble Machine Learning Model a Reliable Method for Detecting Neoplastic Infiltration of Thyroid Cartilage in Laryngeal Cancers en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 58066004500
gdc.author.scopusid 57195215516
gdc.author.scopusid 57195337017
gdc.author.scopusid 56770177500
gdc.author.scopusid 60212707500
gdc.author.scopusid 60213095100
gdc.author.scopusid 60213095100
gdc.author.wosid Can, Şermin/Kei-5310-2024
gdc.author.wosid Türk, Ömer/Aai-6751-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp [Can, Sermin; Ayral, Muhammed; Kozan, Gunay; Onur, Mehmet; Akdag, Mehmet] Dicle Univ, Fac Med, Dept Otorhinolaryngol & Head Neck Surg Clin, TR-21010 Diyarbakir, Turkiye; [Can, Sermin; Ayral, Muhammed; Kozan, Gunay; Onur, Mehmet; Akdag, Mehmet] Dicle Univ, Fac Med, Head & Neck Surg Clin, TR-21010 Diyarbakir, Turkiye; [Turk, Omer] Mardin Artuklu Univ, Fac Engn & Architecture, Dept Comp Engn, TR-47100 Mardin, Turkiye; [Yagiz, Eyyup] Sanliurfa Training & Res Hosp, Dept Otorhinolaryngol, TR-63200 Sanliurfa, Turkiye; [Yagiz, Eyyup] Sanliurfa Training & Res Hosp, Head & Neck Surg Clin, TR-63200 Sanliurfa, Turkiye en_US
gdc.description.issue 11 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 1945
gdc.description.volume 61 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4415719935
gdc.identifier.pmid 41303782
gdc.identifier.wos WOS:001624106400001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Article
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.opencitations.count 0
gdc.plumx.newscount 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Türk, Ömer
gdc.wos.citedcount 0
relation.isAuthorOfPublication d7a05184-8649-4d7a-9ede-47416afad38e
relation.isAuthorOfPublication.latestForDiscovery d7a05184-8649-4d7a-9ede-47416afad38e
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery 39ccb12e-5b2b-4b51-b989-14849cf90cae

Files