Optimized ANN-RF Hybrid Model With Optuna for Fault Detection and Classification in Power Transmission Systems

dc.contributor.author Uzel, Hasan
dc.contributor.author Ozupak, Yildirim
dc.contributor.author Alpsalaz, Feyyaz
dc.contributor.author Aslan, Emrah
dc.date.accessioned 2026-02-02T20:22:07Z
dc.date.available 2026-02-02T20:22:07Z
dc.date.issued 2025
dc.description.abstract This study proposes a hybrid machine learning approach that integrates Artificial Neural Networks (ANN) and Random Forest (RF) classifiers, enhanced by Optuna hyperparameter optimization, for fault detection and classification in power transmission networks. The model is trained on a synthetic dataset generated from MATLAB/Simulink simulations of an 11 kV multi-generator system, incorporating three-phase current (Ia, Ib, Ic) and voltage (Va, Vb, Vc) signals under fault scenarios such as line-to-ground (LG), double line-to-ground (LLG), and three-phase symmetrical (LLLG) faults. To address class imbalance, the Synthetic Minority Oversampling Technique (SMOTE) is applied, ensuring balanced representation of rare fault categories. The ANN-RF model achieves superior performance, with 99.8% accuracy, 99.5% precision, and 99.4% recall, consistently outperforming traditional classifiers including K-Nearest Neighbors, Bagging, AdaBoost, and Gradient Boosting. Its effectiveness arises from ANN's non-linear feature extraction, RF's ensemble robustness, and Optuna's hyperparameter tuning, with SMOTE improving detection of rare fault types. Compared with advanced models such as Modified InceptionV3 (98.93% accuracy) and Extreme Learning Machines (99.60% accuracy), the proposed approach provides a balanced trade-off between sensitivity and specificity, offering a reliable solution for fault identification. Nonetheless, challenges in computational efficiency and reliance on simulated data highlight the need for validation with real-world measurements and further optimization for real-time smart grid applications. en_US
dc.description.sponsorship Scientific Research Projects Coordination Unit of Dicle University [SİLVAN-MYO.25.002] en_US
dc.description.sponsorship Scientific Research Projects Coordination Unit of Dicle University. Project Number: SİLVAN-MYO.25.001. en_US
dc.identifier.doi 10.1038/s41598-025-31008-y
dc.identifier.issn 2045-2322
dc.identifier.scopus 2-s2.0-105027273790
dc.identifier.uri https://doi.org/10.1038/s41598-025-31008-y
dc.identifier.uri https://hdl.handle.net/20.500.12514/10240
dc.language.iso en en_US
dc.publisher Nature Portfolio en_US
dc.relation.ispartof Scientific Reports en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fault Detection en_US
dc.subject Power Transmission Lines en_US
dc.subject Hybrid Model en_US
dc.subject Machine Learning en_US
dc.subject Optuna Optimization en_US
dc.title Optimized ANN-RF Hybrid Model With Optuna for Fault Detection and Classification in Power Transmission Systems en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 58826043600
gdc.author.scopusid 57200142934
gdc.author.scopusid 59221704100
gdc.author.scopusid 58083655800
gdc.author.wosid Aslan, Emrah/Hpg-5766-2023
gdc.author.wosid Alpsalaz, Feyyaz/Ldg-5760-2024
gdc.author.wosid Uzel, Hasan/Hik-2925-2022
gdc.author.wosid Özüpak, Yıldırım/R-8902-2018
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.collaboration.industrial false
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp [Uzel, Hasan; Alpsalaz, Feyyaz] Bozok Univ, Akdagmadeni Vocat Sch, Yozgat, Turkiye; [Ozupak, Yildirim] Dicle Univ, Silvan Vocat Sch, Diyarbakir, Turkiye; [Aslan, Emrah] Mardin Artuklu Univ, Fac Engn & Architecture, Mardin, Turkiye en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 16 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4417123591
gdc.identifier.pmid 41361559
gdc.identifier.wos WOS:001660891100001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.popularity 2.7494755E-9
gdc.openalex.collaboration National
gdc.opencitations.count 0
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Aslan, Emrah
gdc.wos.citedcount 0
relation.isAuthorOfPublication ea96819c-4e93-4dc4-a97c-2ca74bd3f34d
relation.isAuthorOfPublication.latestForDiscovery ea96819c-4e93-4dc4-a97c-2ca74bd3f34d
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery 39ccb12e-5b2b-4b51-b989-14849cf90cae

Files