MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Application of Half-Sandwich Metal-Phosphinite Compounds to Biological Activities: Determine the energies of the HOMO and LUMO levels

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Mononuclear transition metal complexes 1-(furan-2-yl)ethyldiphenyl[dichloro(η6-p-cymene)ruthenium(II)]phosphinite, (2), 1-(furan-2-yl)ethyldiphenyl[dichloro(η6-benzene) ruthenium(II)] phosphinite (3), 1-(furan-2-yl)ethyldipheny[chloro(η4-1,5-cyclooctadiene)rhodium(I)]phosphinite (4), 1-(furan-2-yl)ethyldiphenyl[dichloro (η5pentamethylcyclopentadienyl)iridium (III)] phosphinite (5) were synthesized and characterized by microanalysis, infrared, MS, and NMR spectroscopy. The biological activities of the complexes were also tested. Compounds 2 and 5 were the best complexes at DPPH radical scavenging and reducing power activity at 73.27 % and 0.41 at 200 μg/mL, respectively. The highest antimicrobial activity exhibited by complex 3 as 14 mm inhibition zone against S. aureus. All of the complexes have cleaved the DNA from the double-strand and exhibited three bands on gel electrophoresis. Moreover, cyclic voltammetry studies of the phosphinite complexes were carried out to determine the energies of the HOMO and LUMO levels as well as to estimate their electrochemical and some electronic properties.

Description

Keywords

Biological Study; Electron transport; Phosphinite Ligand; Transition metal

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q4

Scopus Q

Source

Zeitschrift fur Anorganische und Allgemeine Chemie

Volume

Issue

Start Page

End Page