Comparison and Optimization of Machine Learning Methods for Fault Detection in District Heating and Cooling Systems

dc.contributor.author Cinar, Mehmet
dc.contributor.author Aslan, Emrah
dc.contributor.author Ozupak, Yildirim
dc.date.accessioned 2025-05-01T22:15:35Z
dc.date.accessioned 2025-09-17T14:28:26Z
dc.date.available 2025-05-01T22:15:35Z
dc.date.available 2025-09-17T14:28:26Z
dc.date.issued 2025
dc.description Aslan, Emrah/0000-0002-0181-3658; en_US
dc.description.abstract In this study, the methods used for the detection of sub-station pollution failures in district heating and cooling (DHC) systems are analyzed. In the study, high, medium, and low-level pollution situations are considered and machine learning methods are applied for the detection of these failures. Random forest, decision tree, logistic regression, and CatBoost regression algorithms are compared within the scope of the analysis. The models are trained to perform fault detection at different pollution levels. To improve the model performance, hyper parameter optimization was performed with random search optimization, and the most appropriate values were selected. The results show that the CatBoost regression algorithm provides the highest accuracy and overall performance compared to other methods. The CatBoost model stood out with an accuracy of 0.9832 and a superior performance. These findings reveal that CatBoost-based approaches provide an effective solution in situations requiring high accuracy, such as contamination detection in DHC systems. The study makes an important contribution as a reliable fault detection solution in industrial applications. en_US
dc.identifier.doi 10.24425/bpasts.2025.154063
dc.identifier.issn 0239-7528
dc.identifier.issn 2300-1917
dc.identifier.scopus 2-s2.0-105000172181
dc.identifier.uri https://doi.org/10.24425/bpasts.2025.154063
dc.language.iso en en_US
dc.publisher Polska Akad Nauk, Polish Acad Sci, Div Iv Technical Sciences Pas en_US
dc.relation.ispartof Bulletin of the Polish Academy of Sciences-Technical Sciences en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Pollution Detection en_US
dc.subject Grid Search Optimization en_US
dc.subject Machine Learning en_US
dc.subject DHC en_US
dc.title Comparison and Optimization of Machine Learning Methods for Fault Detection in District Heating and Cooling Systems en_US
dc.title Comparison and Optimization of Machine Learning Methods for Fault Detection in District Heating and Cooling Systems
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Aslan, Emrah/0000-0002-0181-3658
gdc.author.wosid Çinar, Mehmet/U-9291-2017
gdc.author.wosid Aslan, Emrah/Hpg-5766-2023
gdc.author.wosid Ozupak, Yıldırm/R-9877-2018
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp [Cinar, Mehmet] Bitlis Eren Univ, Organized Ind Zone Vocat Sch, Dept Elect, Bitlis, Turkiye; [Aslan, Emrah] Mardin Artuklu Univ, Dept Comp Engn, Fac Engn & Architecture, Mardin, Turkiye; [Ozupak, Yildirim] Dicle Univ, Silvan Vocat Sch, Dept Elect, Diyarbakir, Turkiye en_US
gdc.description.endpage 154063
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 154063
gdc.description.volume 73 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4408118094
gdc.identifier.wos WOS:001521511200001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5437168E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.5061447E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.opencitations.count 0
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Aslan, Emrah
gdc.wos.citedcount 2
relation.isAuthorOfPublication ea96819c-4e93-4dc4-a97c-2ca74bd3f34d
relation.isAuthorOfPublication.latestForDiscovery ea96819c-4e93-4dc4-a97c-2ca74bd3f34d
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery 39ccb12e-5b2b-4b51-b989-14849cf90cae

Files