MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Can deep learning replace histopathological examinations in the differential diagnosis of cervical lymphadenopathy?

dc.authorid 0000-0002-0060-1880
dc.contributor.author Can, Sermin
dc.contributor.author Türk, Ömer
dc.contributor.author Ayral, Muhammed
dc.contributor.author Kozan, Günay
dc.contributor.author Arı, Hamza
dc.contributor.author Akdağ, Mehmet
dc.contributor.author Yıldırım Baylan, Müzeyyen
dc.contributor.author Türk, Ömer
dc.contributor.other Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
dc.date.accessioned 2024-01-10T13:14:24Z
dc.date.available 2024-01-10T13:14:24Z
dc.date.issued 2024
dc.department MAÜ, Fakülteler, Mühendislik Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
dc.description.abstract Introduction: We aimed to develop a diagnostic deep learning model using contrast-enhanced CT images and to investigate whether cervical lymphadenopathies can be diagnosed with these deep learning methods without radiologist interpretations and histopathological examinations. Material method: A total of 400 patients who underwent surgery for lymphadenopathy in the neck between 2010 and 2022 were retrospectively analyzed. They were examined in four groups of 100 patients: the granulomatous diseases group, the lymphoma group, the squamous cell tumor group, and the reactive hyperplasia group. The diagnoses of the patients were confirmed histopathologically. Two CT images from all the patients in each group were used in the study. The CT images were classified using ResNet50, NASNetMobile, and DenseNet121 architecture input. Results: The classification accuracies obtained with ResNet50, DenseNet121, and NASNetMobile were 92.5%, 90.62, and 87.5, respectively. Conclusion: Deep learning is a useful diagnostic tool in diagnosing cervical lymphadenopathy. In the near future, many diseases could be diagnosed with deep learning models without radiologist interpretations and invasive examinations such as histopathological examinations. However, further studies with much larger case series are needed to develop accurate deep-learning models. en_US
dc.description.citation Can, S., Türk, Ö., Ayral, M. et al. Can deep learning replace histopathological examinations in the differential diagnosis of cervical lymphadenopathy?. Eur Arch Otorhinolaryngol 281, 359–367 (2024). https://doi.org/10.1007/s00405-023-08181-9 en_US
dc.identifier.doi 10.1007/s00405-023-08181-9
dc.identifier.endpage 367 en_US
dc.identifier.issue 1 en_US
dc.identifier.pmid 37578497
dc.identifier.scopus 2-s2.0-85167881545
dc.identifier.startpage 359 en_US
dc.identifier.uri https://doi.org/10.1007/s00405-023-08181-9
dc.identifier.uri https://hdl.handle.net/20.500.12514/5546
dc.identifier.volume 281 en_US
dc.identifier.wos WOS:001048823900002
dc.indekslendigikaynak Web of Science en_US
dc.indekslendigikaynak Scopus en_US
dc.indekslendigikaynak PubMed en_US
dc.institutionauthor Türk, Ömer
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof European Archives of Oto-Rhino-Laryngology en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 3
dc.subject Deep learning en_US
dc.subject Granulomatous diseases en_US
dc.subject Lymphadenopathy en_US
dc.subject Lymphoma en_US
dc.subject Reactive hyperplasia en_US
dc.subject Squamous cell tumor en_US
dc.title Can deep learning replace histopathological examinations in the differential diagnosis of cervical lymphadenopathy? en_US
dc.type Article en_US
dc.wos.citedbyCount 3
dspace.entity.type Publication
relation.isAuthorOfPublication d7a05184-8649-4d7a-9ede-47416afad38e
relation.isAuthorOfPublication.latestForDiscovery d7a05184-8649-4d7a-9ede-47416afad38e
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
turk.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format
Description:
Article/Makale

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: