Evaluation of the Structural, Morphological, Magnetic, Optical, and Dielectric Properties of a Novel Fe3O4@1.4-DHBNanocomposites

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science S.A.

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

This study focuses on the detailed analysis of the synthesis, structural, morphological, surface textural, magnetic, optical, and electrical properties of Fe3O4@1,4-DHB magnetic nanocomposites (MNCs). Fe3O4@1,4-DHB MNCs were produced by a one-step chemical reaction process with a core-shell strategy. The average crystallite size, dislocation density, micro-strain, saturation magnetization, surface area and band gap energy values of Fe3O4@1,4-DHB MNCs were measured as 8.14 nm, 15.86 x 10-3 nm-2, 3.74 x 10-3, 41.96 emu/g, 101.96 m2/g and 4.38 eV, respectively. Fe3O4@1,4-DHB MNCs were determined to have an inverse spinel structure, exhibit superparamagnetic, and mesoporous characteristics. The narrow band gap of Fe3O4@1,4-DHB MNCs reveals that it has a wide light usage range and exhibits optical properties. The behaviors of the parameters Bode curve, dielectric constant, dielectric loss factor, loss tangent value, capacitance, admittance (susceptance, conductance), and real electric modulus, loss electric modulus of Fe3O4@1,4-DHB MNCs were investigated. The series resistance of Fe3O4@1,4-DHB MNCs was measured as 402 S2, capacitance as 2.352 x 10-11 F, and charge transfer resistance as 227.3 kS2. It was observed that increasing the frequency decreased the dielectric constant, dielectric loss factor, tans (after a certain value), and capacitance values. However, increasing the applied voltage (at low frequency) increased the phase angle, dielectric loss factor, tans values, capacitance values, and conductance values in a smooth regime. Because this nanocomposite exhibits magnetic, optical and dielectric properties, it can play an important role as a material that can be used in various applications in many branches of industry in the future.

Description

Keywords

Admittance, Capacitance, Conductance, Optic Material, Magnetic Nanocomposite, Susceptance

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Journal of Alloys and Compounds

Volume

1043

Issue

Start Page

184228

End Page

PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 1

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

2

ZERO HUNGER
ZERO HUNGER Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

15

LIFE ON LAND
LIFE ON LAND Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo