Sağlık Hizmetleri Meslek Yüksekokulu
Permanent URI for this communityhttps://hdl.handle.net/20.500.12514/32
Browse
Browsing Sağlık Hizmetleri Meslek Yüksekokulu by WoS Q "Q1"
Now showing 1 - 20 of 25
- Results Per Page
- Sort Options
Article Boletus edulis loaded with gamma-Fe2O3 nanoparticles as a magnetic sorbent for preconcentration of Co(II) and Sn(II) prior to their determination by ICP-OES(SPRINGER WIEN, 2018) Özdemir, Sadin; Yalçın, M. Serkan; Kılınç, Ersin; Soylak, MustafaThe authors show that the fungus Boletus edulis loaded with gamma-Fe2O3 nanoparticles is a viable sorbent for magnetic solid phase extraction of trace levels of Co(II) and Sn(II). The surface structure of immobilized magnetized B. edulis was characterized by FT-IR, SEM and EDX. Experimental parameters were optimized. Following elution with 1 M HCl, the ions were quantified by ICP-OES. The limits of detection are 21 pg.mL(-1) for Co(II), and 19 pg.mL(-1) for Sn(II). The preconcentration factors are 100 for both ions. The sorption capacities of the sorbent are 35.8 mg.g(-1) for Co(II) and 29.6 mg.g(-1) for Sn(II). The method was applied to the analysis of certificated reference materials and gave >= 95% recoveries with low RSDs. It was also successfully applied to the quantification of Co(II) and Sn(II) in spiked environmental and food samples.Article Comparative and competitive adsorption of gaseous toluene, ethylbenzene, and xylene onto natural cellulose-modified Fe3O4 nanoparticles(ScienceDirect, 2022) Ece, Mehmet Şakir; Kutluay, SinanMany industrial processes produce volatile organic compound (VOC) pollutants within multicomponent systems. Therefore, exploring the comparative and competitive adsorption of VOCs is of both practical and scientific interest. This study elucidates the adsorption behavior of gaseous toluene, ethylbenzene, and xylene (TEX) targeted as VOCs onto natural cellulose-modified Fe3O4 (NC-Fe3O4) nanoparticles (NPs) both individually and in multicomponent systems for the first time in the literature. The characterization of NC-Fe3O4 synthesized via co precipitation method was carried out with analysis techniques including BET, SEM, EDS, FTIR, and TGA-DTA. The adsorption capacities of TEX as a single-component onto NC-Fe3O4 (for 20 mg L-1 TEX inlet concentration) were found as 477, 550, and 578 mg g(-1), respectively. In contrast, with TEX in a binary-component system, the adsorption capacity of the T (for 20 mg L-1 T with 10 mg L-1 E and 10 mg L-1 X, respectively) decreased by approximately 43% and 50% for the binary-mixtures of T-E and T-X, respectively, due to competition with E and X for adsorption sites. Similarly, the adsorption capacity of the E (for 20 mg L-1 E with 10 mg L-1 X) decreased by approximately 46% due to competition with the X for adsorption sites. With TEX in a ternary-component system, the adsorption capacity of the X remained consistent, indicating its competitive dominance over the E and T. The adsorption capacity of NC-Fe3O4 followed the order of X > E > T in the ternary-component system, which agrees with the adsorption results for the single-component system. The adsorption mechanism of TEX was explained by fitting the adsorption data to diverse kinetic and isotherm models. The NC-Fe3O4 with a superior performance in terms of both reuse efficiency and adsorption capacity, could be used as a promising and renewable adsorbent for efficient treatment of VOC pollutants. The findings of the current study will contribute to a better understanding of the comparative and competitive adsorption behaviors among different VOC pollutants in relation to a given adsorbent.Article Ecofriendly Synthesis of Silver Nanoparticles Using Ananas comosus Fruit Peels: Anticancer and Antimicrobial Activities(Hindawi, 2021) Baran, Ayşe; Keskin, Cumali; Baran, Mehmet Fırat; Huseynova, Irada; Khalilov, Rovshan; Eftekhari, Aziz; Irtegun-Kandemir, Sevgi; Kavak, Deniz EvrimMetallic nanoparticles are valuable materials and have a range of uses. Nanoparticles synthesized from plant wastes by environment-friendly methods have attracted the attention of researchers in recent years. Also, the advantages of biological resources and synthesis methods are attracting attention. In this study, silver nanoparticles were synthesized from Ananas comosus fruit peels using ecofriendly method steps. The characterization of the particles obtained was determined by using a UV-visible spectrophotometer (UV-Vis.), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction diffractometer (XRD), Fourier scanning electron microscope (FESEM), and transmission electron microscopy (TEM). The nanoparticles showed maximum absorbance at 463 nm, measuring 11.61 in crystal nanosize, and presented spherical in appearance. An antimicrobial activity test was determined with the minimum inhibition concentration (MIC) method. The nanoparticles showed promising inhibitory activity on the Gram-positive and Gram-negative pathogen microorganisms (Escherichia coli ATCC25922, Staphylococcus aureus ATCC29213, Bacillus subtilis ATCC11774, Pseudomonas aeruginosa ATCC27833 bacteria, and Candida albicans yeast) at low concentrations. The cytotoxic and growth inhibitory effects of silver nanoparticles on different cancer cell lines were examined via the MTT assay. © 2021 Ayşe Baran et al.Article Fullerene C-60 functionalized gamma-Fe2O3 magnetic nanoparticle: Synthesis, characterization, and biomedical applications(TAYLOR & FRANCIS LTD, 2016) Kilinc, ErsinHybrid magnetic nanoparticles composed from C-60 fullerene and -Fe2O3 were synthesized by hydrothermal method. XRD, FT-IR, VSM, SEM, and HR-TEM were employed for characterizations. The magnetic saturation value of C-60--Fe2O3 magnetic nanoparticles was 66.5 emu g(- 1). Concentration of Fe in nanoparticles asdetermined by ICP-OES was 40.7% Fe. Particle size of C-60--Fe2O3 magnetic nanoparticles was smaller than 10 nm. Maximum adsorption capacity of C-60--Fe2O3 for flurbiprofen, a non-steroidal anti-inflammatory drug, was calculated from Langmuir isotherm as 142.9 mg g(- 1).Article gamma-Fe2O3 magnetic nanoparticle functionalized with carboxylated multi walled carbon nanotube for magnetic solid phase extractions and determinations of Sudan dyes and Para Red in food samples(ELSEVIER SCI LTD, 2018) Kilinc, Ersin; Celik, Kadir Serdar; Bilgetekin, HavinHybrid nanostructures composed of gamma-Fe2O3 (maghemite) and carboxylated-multi walled carbon nanotube (cMWCNT) were used for the magnetic solid phase extractions and determination of Sudan I, II, III, IV, Para Red, Sudan Black B and Sudan Red 7B in chili products. High performance liquid chromatography (HPLC) was employed for the measurements. Limit of quantification (LOQ) values were found in the range 0.44-2.82 ng mL(-1) for analytes. The best extraction parameters were determined as pH 8.0, 40 mg of magnetic nanoparticle, 4.0 min of contact time, 0.3 mL desorption by acetonitrile. The samples were dissolved in acetone-dichloromethane-methanol (3: 2: 1, v/v/v) and diluted with acetonitrile-methanol (v/v; 80: 20) before the method was applied. Concentrations of Sudan dyes and Para Red were determined in four samples of chili powder from less than LOQ to 31.21 +/- 1.6 ng g(-1), two samples of chili tomato sauces (lower than LOQ) and two samples of ketchup (lower than LOQ).Article Highly improved solar cell efficiency of Mn-doped amine groups-functionalized magnetic Fe3O4@SiO2 nanomaterial(Wiley Online Library, 2021) Kutluay, Sinan; Horoz, Sabit; Şahin, Ömer; Ekinci, ArzuHerein, magnetic Fe3O4@SiO2 nanomaterial functionalized with amine groups (Fe3O4@SiO2@IPA) doped with manganese (Mn) was prepared, characterized and used for solar cell application. Fe3O4@SiO2@IPA-Mn was prepared via the co-precipitation and sol-gel techniques. Energy-dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) measurements were performed to examine the structure of Fe3O4, Fe3O4@SiO2, Fe3O4@SiO2@IPA and Fe3O4@SiO2@IPA-Mn. General morphology and textural properties of the prepared magnetic nanomaterials were clarified by Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM). In addition, Ultraviolet-visible (UV-Vis) spectroscopy and thermal gravimetric analysis (TGA) were used to have a knowledge about the energy band gap and thermal behavior of the prepared magnetic nanomaterials. The energy band gap of Fe3O4@SiO2@IPA with spinel structure was determined as approximately 2.48 eV. It was understood that Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@IPA showed type IV-H3 hysteresis cycle according to IUPAC. From the BET data, it was determined that the specific surface areas of Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@IPA were 60.85, 28.99 and 40.41 m(2)/g, respectively. The pore size distributions of Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@IPA were calculated as 8.55, 1.53 and 1.70 nm, respectively, by the BJH method. Also, it was observed that the dominant pore widths of Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@IPA were calculated similar to 5.58, similar to 0.88 and similar to 17.92 nm, respectively, by the DFT method. Au/CuO/Fe3O4@SiO2@IPA-Mn/ZnO/SnO2: F solar cell device was created using existing Fe3O4@SiO2@IPA-Mn as a buffer layer. The power conversion efficiency (%) of Fe3O4@SiO2@IPA-Mn based solar cell device was calculated as 2.054. This finding suggest that Fe3O4@SiO2@IPA-Mn can be used as a promising sensitizer in solar cell technology. Moreover, in this study, the effectiveness of the modification of manganese (one of the transition metals, which is cheap and easily available) with magnetic nanomaterials in the use of solar cell technology was demonstrated for the first time.Article In situ atom trapping of Bi on W-coated slotted quartz tube flame atomic absorption spectrometry and interference studies(PERGAMON-ELSEVIER SCIENCE LTD, 2013) Kilinc, Ersin; Bakirdere, Sezgin; Aydin, Firat; Ataman, O. YavuzAnalytical performances of metal coated slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) and slotted quartz tube in situ atom trapping flame atomic absorption spectrometry (SQT-AT-FAAS) systems were evaluated for determination of Bi. Non-volatile elements such as Mo, Zr, W and Ta were tried as coating materials. It was observed that W-coated SQT gave the best sensitivity for the determination of Bi for SQT-FAAS and SQT-AT-FMS. The parameters for W-coated SQT-FAAS and W-coated SQT-AT-FAAS were optimized. Sensitivity of FAAS for Bi was improved as 4.0 fold by W-coated SQT-FAAS while 613 fold enhancement in sensitivity was achieved by W-coated SQT-AT-FAAS using 5.0 min trapping with respect to conventional FAAS. MIBK was selected as organic solvent for the re-atomization of Bi from the trapping surface. Limit of detection values for W-coated SQT-FAAS and W-coated SQT-AT-FAAS was obtained as 0.14 mu g mL(-1) and 0.51 ng mL(-1), respectively. Linear calibration plot was obtained in the range of 2.5-25.0 ng mL(-1) for W-coated SQT-AT-FAAS. Accuracy of the W-coated SQT-AT-FAAS system was checked by analyzing a standard reference material, NIST 1643e. (C) 2013 Elsevier B.V. All rights reserved.Article Investigation of Antimicrobial and Cytotoxic Properties and Specification of Silver Nanoparticles (AgNPs) Derived From Cicer arietinum L. Green Leaf Extract(FRONTIERS, 2022) Baran, Ayşe; Baran, Mehmet Fırat; Keskin, Cumali; Hatipoğlu, AbdulkerimUsing biological materials to synthesize metallic nanoparticles has become a frequently preferred method by researchers. This synthesis method is both fast and inexpensive. In this study, an aqueous extract obtained from chickpea (Cicer arietinum L.) (CA) leaves was used in order to synthesize silver nanoparticles (AgNPs). For specification of the synthesized AgNPs, UV-vis spectrophotometer, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron dispersive X-ray (EDX), and zeta potential (ZP) analyses data were used. Biologically synthesized AgNPs demonstrated a maximum surface plasmon resonance of 417.47 nm after 3 h. With the powder XRD model, the mean crystallite dimension of nanoparticles was determined as 12.17 mm with a cubic structure. According to the TEM results, the dimensions of the obtained silver nanoparticles were found to be 6.11–9.66 nm. The ZP of the electric charge on the surface of AgNPs was measured as −19.6 mV. The inhibition effect of AgNPs on food pathogen strains and yeast was determined with the minimum inhibition concentration (MIC) method. AgNPs demonstrated highly effective inhibition at low concentrations especially against the growth of B. subtilis (0.0625) and S. aureus (0.125) strains. The cytotoxic effects of silver nanoparticles on cancerous cell lines (CaCo-2, U118, Sk-ov-3) and healthy cell lines (HDF) were revealed. Despite the increase of AgNPs used against cancerous and healthy cell lines, no significant decrease in the percentage of viability was detected. Copyright © 2022 Baran, Fırat Baran, Keskin, Hatipoğlu, Yavuz, İrtegün Kandemir, Adican, Khalilov, Mammadova, Ahmadian, Rosić, Selakovic and Eftekhari.Article Investigation of the antibiotic resistance and biofilm-forming ability of Staphylococcus aureus from subclinical bovine mastitis cases(ELSEVIER SCIENCE INC, 2016) Aslantas, Ozkan; Demir, CemilA total of 112 Staphylococcus aureus isolates obtained from subclinical bovine mastitis cases were examined for antibiotic susceptibility and biofilm-forming ability as well as genes responsible for antibiotic resistance, biofilm-forming ability, and adhesin. Antimicrobial susceptibility of the isolates were determined by disk diffusion method. Biofilm forming ability of the isolates were investigated by Congo red agar method, standard tube method, and microplate method. The genes responsible for antibiotic resistance, biofilm-forming ability, and adhesion were examined by PCR. Five isolates (4.5%) were identified as methicillin-resistant Staph. aureus by antibiotic susceptibility testing and confirmed by mecA detection. The resistance rates to penicillin, ampicillin, tetracycline, erythromycin, trimethoprim-sulfamethoxazole, enrofloxacin, and amoxicillin-clavulanic acid were 45.5, 39.3, 33, 26.8, 5.4, 0.9, and 0.9%, respectively. All isolates were susceptible against vancomycin and gentamicin. The blaZ (100%), tetK (67.6%), and ermA (70%) genes were the most common antibiotic-resistance genes. Using Congo red agar, microplate, and standard tube methods, 70.5, 67, and 62.5% of the isolates were found to be biofilm producers, respectively. The percentage rate of icaA, icaD, and bap genes in Staph. aureus isolates were 86.6, 86.6, and 13.4%, respectively. The adhesion molecules fnbA, can, and clfA were detected in 87 (77.7%), 98 (87.5%), and 75 (70%) isolates, respectively. The results indicated that Staph. aureus from sublinical bovine mastitis cases were mainly resistant to beta-lactams and, to a lesser extent, to tetracycline and erythromycin. Also, biofilm- and adhesion-related genes, which are increasingly accepted as an important virulence factor in the pathogenesis of Staph. aureus infections, were detected at a high rate.Article Investigations of Hg(II) and Pb(II) tolerance, removal and bioaccumulation and their effects on antioxidant enzymes on thermophilic Exiguobacterium profundum(Human and Ecological Risk Assessment, 2020) Kılınç, Ersin; Akkoyun, Mahire Bayramoğlu; Özdemir, SadinHg(II) and Pb(II) tolerance, removal, bioaccumulation and effects on antioxidant enzymes of thermophilic Exiguobacterium profundum were investigated. The results indicated that Hg(II) was more toxic than Pb(II) to E. profundum. E. profundum was also more tolerant in solid medium than in liquid medium for Pb(II) and Hg(II). The bacterial growth was not significantly influenced at 1.0 and 2.5 mg/L Pb(II) and Hg(II) for 24 h. The highest Hg(II) and Pb(II) bioaccumulation amounts were determined as 37.56 and 54.35 mg metal/dried bacteria, respectively. Bioaccumulation capacities of the cell membrane of E. profundum for Hg(II) and Pb(II) were determined. The different concentrations of Pb(II) and Hg(II) enhanced the SOD and CAT enzymes. In addition, variations of the surface macrostructure and the functionality of E. profundum after the interaction with Hg(II) and Pb(II) were investigated by the scanning electron microscope (SEM) and the Fourier transform infrared spectroscopy (FT-IR), respectively. This investigation obviously showed that thermophilic E. profundum can also be applied for removal and recovery of toxic metals from industrial wastewater. Clearly, a further investigation should be utilized by thermophilic microorganisms. According to antioxidant enyzme activities, E. profundum can be also used as a bioindicator for the detection of toxic metal pollution in natural water samples.Article Kinetic and isotherm investigation into the removal of heavy metals using a fungal-extract-based bio-nanosorbent(Environmental Technology and Innovation, 2020) Yıldırım, Ayfer; Baran, Mehmet Fırat; Acay, HilalAdsorption is very economical and environmentally friendly method that is commonly accepted as a promising technique for the removal of heavy metals. In this study a fungal-extract-based (FE-CB) bio-nanosorbent was prepared and used as an efficient biosorbent for the removal of heavy metals, namely Cu(II) and Ni(II), from aqueous solutions. FE-CB was characterized by scanning electron microscope, Brunauer–Emmett–Teller surface area and porosity analyzer, Fourier transform infrared, x-ray diffraction, differential scanning calorimeter, thermalgravimetric analysis and zeta potential. The Brunauer–Emmett–Teller surface area, pore volume and average pore diameter of FE-CB were 7.43 m2/g, 0.060 cm3/g, and 2.82 nm, respectively. The adsorbtion properties of FE-CB onto both Cu(II) and Ni(II) were investigated in terms of biosorbent dosage, temperature, initial concentration of Cu(II) and Ni(II) ions, pH and contact time in the batch experiments. The dependence of the biosorption mechanism on pH was revealed and the optimum pH was determined as 6 for Ni(II) and 5 for Cu(II). The Langmuir and Freundlich isothermal models and the kinetic Pseudo-first-order and Pseudo-second-order kinetic models were used to describe the adsorption performance of FE-CB. The activation energy was calculated by pseudo-second-order rate constants. In addition, thermodynamic parameters, standard Gibbs free energy, standard enthalpy and standard entropy were analyzed using the (Van't Hoff equation). The biosorption process was found to be spontaneous, favorable and endothermic.Article Magnetic solid phase extractions of Co(II) and Hg(II) by using magnetized C-micaceus from water and food samples(ELSEVIER SCI LTD, 2019) Ozdemir, Sadin; Mohamedsaid, Siham Abdullah; Kilinc, Ersin; Soylak, MustafaA new bio-MSPE sorbent based on the use of C. micaceus and gamma-Fe2O3 magnetic nanoparticle was prepared for the preconcentrations of Co(II) and Hg(II). Critical parameters including pH, flow rate, quantity of C. micaceus, quantity of gamma-Fe2O3 magnetic nanoparticle, eluent (type, concentration and volume), sample volume, and foreign ions were examined. Surface structure and variations after interaction with Co(II) and Hg(II) of bio-MSPE sorbent were investigated by FT-IR, SEM, and EDX. The impact of bio-MSPE column reusage was also tested. The biosorption capacities were determined as 24.7 mg g(-1) and 26.2 mg g(-1), respectively for Co(II) and Hg(II). Certified reference materials were utilized to find out the accuracy of the prepared bio-MSPE method. This novel bio-MSPE method was accomplished by being applied to real food and water samples. In particular, it will be possible to make use of C. micaceus as new alternatives, in environmental biotechnology applications.Article O-carboxymethyl chitosan Schiff base complexes as affinity ligands for immobilized metal-ion affinity chromatography of lysozyme(ELSEVIER SCIENCE BV, 2018) Acet, Ömür; Baran, Talat; Erdönmez, Demet; Aksoy, Neşe Hayat; Alacabey, İhsan; Menteş, Ayfer; Odabaşı, MehmetWe synthesized Ni2+-attached O-Carboxymethyl chitosan Schiff base complexes embedded composite cryogels (Ni2+-O-CMCS-CCs) by means of polymerization of gel-forming precursors at subzero temperatures. Prepared affinity cryogel showed excellent adsorption performance for lysozyme selected as model protein to test adsorption parameters, demonstrating an adsorption capacity of 244.6 mg/g (15.3 mg/g for Ni2+ minus O-CMCS-CCs), with fast adsorption equilibrium within 30 min and good reversibility. The performance of Ni2+-O-CMCS-CCs for lysozyme was also evaluated by SDS-PAGE, and a purification efficiency of 86.9% with 89.5% purification yield was determined. The swelling test, FT-IR, and SEM analysis were carried out for the characterization of Ni2+-O-CMCS-CCs. At the end of 35 adsorption-desorption cycles, there was no significant change in the adsorption capacity. (C) 2018 Elsevier B.V. All rights reserved.Book Review Preconcentration of metal ions using microbacteria(SPRINGER WIEN, 2013) Ozdemir, Sadin; Okumus, Veysi; Dundar, Abdurrahman; Kilinc, ErsinThis review (160 refs). covers the current state of the art of microbacteria-based sorbents for preconcentration of metal ions at trace levels. We highlight advantages and major challenges of the techniques and discuss future perspectives of both batch and column-based methods. Particular attention is paid to the preconcentration of metal ions using resin-immobilized microbacteria for solid phase extractions. We also discuss detection methods including UV-vis spectrophotometry, FAAS, ICP-OES and ICP-MS. Analytical figures of merit are compared, and examples are given for the application to a variety of samples including food, beverages, alloys, water, soil, and geological samples.Article Preconcentrations and determinations of copper, nickel and lead in baby food samples employing Coprinus silvaticus immobilized multi-walled carbon nanotube as solid phase sorbent(ELSEVIER SCI LTD, 2019) Ozdemir, Sadin; Kilinc, Ersin; Oner, Ebru ToksoyPreconcentrations of Cu(II), Ni(II) and Pb(II) ions by using Coprinus silvaticus immobilized multiwalled carbon nanotube (MWCNT) were investigated. Effects of important parameters on preconcentration procedure were examined. The best pH values of for Cu(II), Ni(II) and Pb(II) were found to be 6.0, 6.0 and 4.0, respectively. Flow rate of sample solution was 2.0 mL min(-1), while desorption was achieved at 1.0 mL min(-1) flow rate. Preconcentration factors were achieved as 60 for Cu(II), Ni(II) and 70 for Pb(II) (by dividing initial sample volume to final volume). LODs were calculated as 0.014, 0.016 and 0.093 ng mL(-1), respectively for Cu(II), Ni(II) and Pb(II). Accuracy of the method was checked by applying to certified reference samples. Inductively coupled plasma optical emission spectrometer (ICP OES) was employed for measurements of Cu(II), Ni(II) and Pb(II) in digested baby food samples.Article Preconcentrations of Ni(II) and Co(II) by using immobilized thermophilic Geobacillus stearothermophilus eSO-20 before ICP-OES determinations(ELSEVIER SCI LTD, 2018) Yalcin, M. Serkan; Ozdemir, Sadin; Kilinc, ErsinThis study deals with the preconcentrations of Ni(II) and Co(II) ions in real samples using the solid phase extraction method (SPE) before their determinations by inductively coupled plasma optical emission spectrometry (ICP-OES). Thermophilic bacterium Geobacillus stearothermophilus SO-20 (Accession number: KJ095002), loaded with Amberlite XAD-4, was utilized as a novel biosorbent. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscope (SEM) were employed for the investigation of the bacterial surface before and after Ni(II) and Co(II) biosorption. The experimental parameters were examined to find the best conditions. The retained Ni(II) and Co(II) ions on the biosorbent were eluted by using 5.0 ml of 1.0 mol l(-1) HCI as the best eluent. The sorption capacities were found to be 16.8 mg g(-1) for Ni(II) and 21.6 mg g(-1) for Co(II). It was also successfully used for the quantification of Ni(II) and Co(II) in a river water sample, some vegetables and soil.Article Removal of carbol fuchsin from aqueous solution by using three-dimensional porous, economic, and eco-friendly polymer(Water Environment Research, 2021) Tarhan, TubaIn this study, a three-dimensional (3D) porous polydimethylsiloxane (PDMS) was prepared using a cheap material with a highly simple and different method. PDMS was firstly applied for the removal of carbol fuchsin (CF) cationic organic dye pollution in this study. Besides, the adsorption capacity of 3D PDMS for removal of the CF was found quite high compared to other materials in already published results. The synthesized PDMS was characterized using several spectroscopic and imaging techniques such as FTIR, Raman, SEM, stereomicroscope, EDX, UV/Vis, and TGA. The optimal conditions were found as 10 mg L−1 initial concentration, 20 mg of adsorbent dose, 2 h contact time, pH 10, and 25°C temperature. The removal % of CF and the maximum adsorption capacity were calculated at approximately 89% and 88.8 mg g−1, respectively. Furthermore, the equilibrium studies showed that the Langmuir isotherm model fitted well with the removal of CF. Moreover, according to the kinetic results, the second-order kinetic model was found suitable (qe,cal 89.3 mg g−1 and qe,exp 88.8 mg g−1 close to each other) for the adsorption of CF. Also, the thermodynamic studies indicated that adsorption occurs spontaneously, and the adsorption process was physical adsorption. Besides, the reusability of the adsorbent was studied. Practitioner points: Water treatment technology should be low cost, economically viable and in the meantime, eco-friendly. The 3D porous PDMS was prepared by using cheap material with a highly simple method and eco-friendly This unique material was firstly applied for the removal of organic dye in water in this study.Article Simultaneous preconcentrations of Co2+, Cr6+, Hg2+ and Pb2+ ions by Bacillus altitudinis immobilized nanodiamond prior to their determinations in food samples by ICP-OES(ELSEVIER SCI LTD, 2017) Ozdemir, Sadin; Kilinc, Ersin; Celik, Kadir Serdar; Okumus, Veysi; Soylak, MustafaA novel solid phase extraction method was developed for simultaneous preconcentration-separation of Co2+, Cr6+, Hg2+ and Pb2+ ions prior to their determinations in food samples by ICP-OES. Thermophilic Bacillus altitudinis immobilized nanodiamond was used as a new biosorbent. SEM and FT-IR analysis were studied to characterize the biosorbent. The optimum pH values of quantitative biosorption for Co2+, Cr6+, Hg2+ and Pb2+ were found to be 5.0, 6.0, 6.0 and 6.0, respectively. A flow rate of 3.0 mL min(-1) was selected as optimum for all metal ions. 5 mL of 1 mol/L HCl was used as eluent. Preconcentration factor was achieved as 80. LODs were calculated as 0.071, 0.023, 0.016 and 0.034 ng mL(-1), respectively for Hg2+, Co2+, Cr6+ and Pb2+. The biosorption capacities were calculated for Co2+, Cr6+, Hg2+ and Pb2+ as 26.4, 30.4, 19.5, and 35.2 mg/g, respectively. The developed method was successfully applied to food samples to determine analyte concentrations. (C) 2016 Published by Elsevier Ltd.Article Structural analysis and biological functionalities of iron(III)- and manganese(III)-thiosemicarbazone complexes: in vitro anti-proliferative activity on human cancer cells, DNA binding and cleavage studies(SPRINGER, 2019) Kaya, Busra; Yilmaz, Zehra Kubra; Sahin, Onur; Aslim, Belma; Tukenmez, Ummugulsum; Ulkusever, BahriOne iron(III) and two manganese(III) complexes based on thiosemicarbazone were synthesized and characterized using analytical and spectroscopic data. The crystallographic analysis showed the square pyramid structures of the complexes. Electronic spectra analysis was performed to determine the nature of the interaction between the complexes and calf thymus DNA (CT-DNA). DNA cleavage activities of the complexes were examined by gel electrophoresis (pBR322 DNA). The cytotoxicity of the complexes was determined against human cervical carcinoma (HeLa) and human colorectal adenocarcinoma (HT-29) cell lines by MTT assay. The results indicated that complex Fe1 is bound to CT-DNA via the intercalation mode, while complexes Mn1 and Mn2 are bound to CT-DNA via groove binding and/or electrostatic interactions rather than the intercalation mode. In addition, they showed good binding activity, which followed the order of Fe1>Mn2>Mn1. Complexes were found to promote the cleavage of DNA from supercoiled form (SC, Form I) to nicked circular form (NC, Form II) without concurrent formation of Form III, revealing the single-strand DNA cleavage. No significant cleavage was found in the presence of Mn1 and Mn2; however, it was observed at 2000 and 3000 mu M concentrations of Fe1. The ability of Fe1 to cleave DNA was greater than that of other complexes and these results are in conformity with their DNA-binding affinities. Cytotoxicity determination tests revealed that the complex Fe1 on HeLa and HT-29 cells exhibited a higher anti-proliferative effect than Mn1 and Mn2 (Fe1>Mn2>Mn1). These studies suggested that the complex Fe1 could be a good candidate as a chemotherapeutic drug targeting DNA. [GRAPHICS]Article Structural analysis and biological functionalities of iron(III)- and manganese(III)-thiosemicarbazone complexes: in vitro anti-proliferative activity on human cancer cells, DNA binding and cleavage studies(Springer, 2019) Kaya, Büşra; Yılmaz, Zehra Kübra; Şahin, Onur; Aslim, Belma; Tükenmez, Ümmügülsüm; Ülküseven, BahriOne iron(III) and two manganese(III) complexes based on thiosemicarbazone were synthesized and characterized using analytical and spectroscopic data. The crystallographic analysis showed the square pyramid structures of the complexes. Electronic spectra analysis was performed to determine the nature of the interaction between the complexes and calf thymus DNA (CT-DNA). DNA cleavage activities of the complexes were examined by gel electrophoresis (pBR322 DNA). The cytotoxicity of the complexes was determined against human cervical carcinoma (HeLa) and human colorectal adenocarcinoma (HT-29) cell lines by MTT assay. The results indicated that complex Fe1 is bound to CT-DNA via the intercalation mode, while complexes Mn1 and Mn2 are bound to CT-DNA via groove binding and/or electrostatic interactions rather than the intercalation mode. In addition, they showed good binding activity, which followed the order of Fe1 > Mn2 > Mn1. Complexes were found to promote the cleavage of DNA from supercoiled form (SC, Form I) to nicked circular form (NC, Form II) without concurrent formation of Form III, revealing the single-strand DNA cleavage. No significant cleavage was found in the presence of Mn1 and Mn2; however, it was observed at 2000 and 3000 µM concentrations of Fe1. The ability of Fe1 to cleave DNA was greater than that of other complexes and these results are in conformity with their DNA-binding affinities. Cytotoxicity determination tests revealed that the complex Fe1 on HeLa and HT-29 cells exhibited a higher anti-proliferative effect than Mn1 and Mn2 (Fe1 > Mn2 > Mn1). These studies suggested that the complex Fe1 could be a good candidate as a chemotherapeutic drug targeting DNA.