The Involvement of the Serotonergic System in Ketamine and Fluoxetine Combination-Induced Cognitive Impairments in Mice
No Thumbnail Available
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Ataturk Univ
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Background: Gluta mater gic N-methyl-D-aspartate (NMDA) receptors play vital roles in memory formation. Changes in the activity of these receptors influence memory processes. Ketamine is a noncompetitive NMDA receptor antagonist drug with promising mood-altering and pain-reducing effects ff ects in low doses. These effects ff ects are believed to be related to altered serotonergic transmission. Methods: The present study investigated the involvement of the serotonergic system in low-dose ketamine administrations' effects ff ects on memory acquisition, consolidation, and retrieval processes. Sixty-four male BALB/c mice were used in this experiment and separated into 8t groups. Mice were treated subchronically with a selective serotonin reuptake inhibitor, fluoxetine, and a serotonin depletion agent, p-chlorophenylalanine (pCPA). A serotonin antagonist, methiothepin, and ketamine were acutely administered 60 minutes before or after the behavioral tests. A passive avoidance (PA) test measured emotional memory acquisition, consolidation, and retrieval processes. Hippocampi malondialdehyde (MDA) levels were analyzed, and histopathological examinations were performed. Results: Ketamine alone did not significantly affect ff ect memory encoding processes in the PA test, while the ketamine-fluoxetine combination disrupted memory consolidation. Fluoxetine negatively affected ff ected the memory acquisition process, which was normalized during the consolidation and retrieval trials. Drug applications did not significantly alter hippocampal MDA levels. In all ketamine-applied groups, histopathologic alterations were evident. Conclusion: Low-dose ketamine administration induces neurodegeneration, and it also impairs memory functions when combined with fluoxetine, indicating increased serotonergic transmission may be involved in the memory-impairing and neurotoxic effects ff ects of ketamine.
Description
Keywords
Ketamine, Serotonergic System, Passive Avoidance Test, Emotional Memory, Brain Morphology
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Q2
Source
Volume
56
Issue
2
Start Page
102
End Page
107