Sağlık Hizmetleri Meslek Yüksekokulu
Permanent URI for this communityhttps://hdl.handle.net/20.500.12514/32
Browse
Browsing Sağlık Hizmetleri Meslek Yüksekokulu by Scopus Q "Q1"
Now showing 1 - 20 of 35
- Results Per Page
- Sort Options
Article Citation - WoS: 24Citation - Scopus: 31Antibiotic Removal from the Aquatic Environment with Activated Carbon Produced from Pumpkin Seeds(Molecules, 2022) Alacabey, İhsanAntibiotics are among the most critical environmental pollutant drug groups. Adsorption is one of the methods used to eliminate these pollutants. In this study, activated carbon was produced from pumpkin seed shells and subsequently modified with KOH. The adsorbent obtained through this procedure was used to remove ciprofloxacin from aqueous systems. Fourier Transform-Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), elemental, X-ray Photoelectron Spectroscopy (XPS), Brunauer–Emmett–Teller (BET) and Zeta analyses were used to characterize the adsorbent. The surface area, in particular, was found to be a very remarkable value of 2730 m2/g. The conditions of the adsorption experiments were optimized based on interaction time, adsorbent amount, pH and temperature. Over 99% success was achieved in removal operations carried out under the most optimal conditions, with an absorption capacity of 884.9 mg·g−1. In addition, the Langmuir isotherm was determined to be the most suitable model for the adsorption interactionArticle Citation - WoS: 22Citation - Scopus: 22Antioxidant Properties of Cultured Mycelia from Four Pleurotus Species Produced in Submerged Medium(TAYLOR & FRANCIS INC, 2013) Dundar, Abdurrahman; Okumus, Veysi; Ozdemir, Sadin; Yildiz, AbdunnasirThe ethanolic extracts of dried cultured mycelia of Pleurotus ostreatus, Pleurotus eryngii, Pleurotus florida, and Pleurotus sajor-caju were analyzed for antioxidant activity in different systems. Tests used are as follows: reducing power, free radical scavenging, superoxide anion radical scavenging, total antioxidant activity, metal chelating activitiy, etc.; total phenolic content was determined. The percentage inhibition of P. ostreatus, P. eryngii, P. florida, and P. sajor-caju at 20 mg/mL concentration on peroxidation in a -carotenelinoleic acid system was 57.19, 60.68, 62.12, and 58.81%, respectively. The reducing power of P. eryngii was higher than the other samples, and its value was 0.86 at 10 mg/mL concentration. P. ostreatus and P. sajor-caju proved to be better at scavenging superoxide anion radicals than the P. eryngii and P. florida. In the scavenging effect of DPPH radical test, P. ostreatus showed the highest activity potential and P. sajor-caju showed the strongest metal chelating capacity.Article Citation - WoS: 73Citation - Scopus: 85Biosynthesis, characterization, and investigation of antimicrobial and cytotoxic activities of silver nanoparticles using Solanum tuberosum peel aqueous extract(Elsevier, 2023) Xu, Jiujun; Yıldıztekin, Mahmut; Han, Dayong; Keskin, Cumali; Baran, Ayşe; Baran, Mehmet Fırat; Eftekhari, Aziz; Aytuğ Ava, Canan; İrtegün Kandemir, Sevgi; Cebe, Deniz Barış; Dağ, Beşir; Beilerli, Aferin; Khalilov, RovshanMetallic nanoparticle biosynthesis is thought to offer opportunities for a wide range of biological uses. The green process of turning biological waste into utilizable products gaining attention due to its economical and eco-friendly approach in recent years. This study reported the ability of Solanum tuberosum (ST) peel extract to the green synthesis of non-toxic, stable, small-sized silver nanoparticles without any toxic reducing agent utilizing the phytochemical components present in its structure. UV-visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, flourier scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and energy dispersive analysis X-ray confirmed the biosynthesis and char-acterization of silver nanoparticles. Also, dynamic light scattering and thermogravimetric ana-lyses showed stable synthesized nanoparticles. The antibacterial activity of the biosynthesized silver nanoparticles was evaluated against four different bacterial strains, Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus) Bacillus subtilis (B. subtilis), and a yeast, Candida albicans (C. albicans) using the minimum inhibitory concen-tration technique. The cytotoxic activities were determined against Human dermal fibroblast (HDF), glioblastoma (U118), colorectal adenocarcinoma (CaCo-2), and human ovarian (Skov-3) cell lines cancer cells using MTT test. The nanoparticle capping agents that could be involved in the reduction of silver ions to Ag NPs and their stabilization was identified using FTIR. Nano -particles were spherical in shape and had a size ranging from 3.91 to 27.07 nm, showed crys-talline nature, good stability (-31.3 mV), and the presence of capping agents. ST-Ag NPs significantly decreased the growth of bacterial strains after treatment. The in vitro analysis showed that the ST-Ag NPs demonstrated dose-dependent cytotoxicity against cell lines. Based on the data, it is feasible to infer that biogenic Ag NPs were capped with functional groups and demonstrated considerable potential as antibacterial and anticancer agents for biomedical and industrial applications.Article Citation - WoS: 22Citation - Scopus: 24Boletus edulis loaded with gamma-Fe2O3 nanoparticles as a magnetic sorbent for preconcentration of Co(II) and Sn(II) prior to their determination by ICP-OES(SPRINGER WIEN, 2018) Özdemir, Sadin; Yalçın, M. Serkan; Kılınç, Ersin; Soylak, MustafaThe authors show that the fungus Boletus edulis loaded with gamma-Fe2O3 nanoparticles is a viable sorbent for magnetic solid phase extraction of trace levels of Co(II) and Sn(II). The surface structure of immobilized magnetized B. edulis was characterized by FT-IR, SEM and EDX. Experimental parameters were optimized. Following elution with 1 M HCl, the ions were quantified by ICP-OES. The limits of detection are 21 pg.mL(-1) for Co(II), and 19 pg.mL(-1) for Sn(II). The preconcentration factors are 100 for both ions. The sorption capacities of the sorbent are 35.8 mg.g(-1) for Co(II) and 29.6 mg.g(-1) for Sn(II). The method was applied to the analysis of certificated reference materials and gave >= 95% recoveries with low RSDs. It was also successfully applied to the quantification of Co(II) and Sn(II) in spiked environmental and food samples.Article Citation - WoS: 29Citation - Scopus: 34Comparative and competitive adsorption of gaseous toluene, ethylbenzene, and xylene onto natural cellulose-modified Fe3O4 nanoparticles(ScienceDirect, 2022) Ece, Mehmet Şakir; Kutluay, SinanMany industrial processes produce volatile organic compound (VOC) pollutants within multicomponent systems. Therefore, exploring the comparative and competitive adsorption of VOCs is of both practical and scientific interest. This study elucidates the adsorption behavior of gaseous toluene, ethylbenzene, and xylene (TEX) targeted as VOCs onto natural cellulose-modified Fe3O4 (NC-Fe3O4) nanoparticles (NPs) both individually and in multicomponent systems for the first time in the literature. The characterization of NC-Fe3O4 synthesized via co precipitation method was carried out with analysis techniques including BET, SEM, EDS, FTIR, and TGA-DTA. The adsorption capacities of TEX as a single-component onto NC-Fe3O4 (for 20 mg L-1 TEX inlet concentration) were found as 477, 550, and 578 mg g(-1), respectively. In contrast, with TEX in a binary-component system, the adsorption capacity of the T (for 20 mg L-1 T with 10 mg L-1 E and 10 mg L-1 X, respectively) decreased by approximately 43% and 50% for the binary-mixtures of T-E and T-X, respectively, due to competition with E and X for adsorption sites. Similarly, the adsorption capacity of the E (for 20 mg L-1 E with 10 mg L-1 X) decreased by approximately 46% due to competition with the X for adsorption sites. With TEX in a ternary-component system, the adsorption capacity of the X remained consistent, indicating its competitive dominance over the E and T. The adsorption capacity of NC-Fe3O4 followed the order of X > E > T in the ternary-component system, which agrees with the adsorption results for the single-component system. The adsorption mechanism of TEX was explained by fitting the adsorption data to diverse kinetic and isotherm models. The NC-Fe3O4 with a superior performance in terms of both reuse efficiency and adsorption capacity, could be used as a promising and renewable adsorbent for efficient treatment of VOC pollutants. The findings of the current study will contribute to a better understanding of the comparative and competitive adsorption behaviors among different VOC pollutants in relation to a given adsorbent.Article Citation - WoS: 49Citation - Scopus: 50Competitive adsorption of VOCs (benzene, xylene and ethylbenzene) with Fe3O4@SiO2-NH@BENZOPHENONE magnetic nanoadsorbents(Elsevier, 2023) Güngör, Çetin; Ece, Mehmet ŞakirVolatile organic compounds (VOCs), which are toxic, mutagenic and carcinogenic, are considered a critical factor for air pollution and cause serious harm to the eco-environment and human health. In this study, Fe3O4, Fe3O4@SiO2-NH2, Fe3O4@SiO2-NH@BENZOFENONE were synthesized as new magnetic nanoadsorbents (MNAs) and used for the first time in the removal of gas-phase benzene, xylene and ethylbenzene. The synthesised MNAs were characterized by SEM-EDS, TEM, FTIR, XRD, VSM, TGA and BET analyses. The characterization results showed that the MNAs have mesoporous structure, type IV physioresorption and type H3 hysteresis loop character. In order to clarify the comparative and competitive adsorption behaviour, the adsorption capacity of Fe3O4@SiO2-NH@BENZOFENONE MNA was found to be in the order of xylene > ethylbenzene > benzene in both single, binary and ternary component systems. The adsorption kinetics of benzene, xylene and ethylbenzene with Fe3O4@SiO2-NH@BENZOFENONE MNA were found to be governed by multistep mechanisms. Fe3O4@SiO2-NH@BENZOFENONE MNA showed reuse efficiencies of 83.07%, 84.35% and 82.99% after 5 cycles for benzene, xylene and ethylbenzene respectively. In the framework of the results, Fe3O4@SiO2-NH@BENZOPHENONE MNA, which has a high potential in terms of both adsorption capacity and reuse efficiency, is proposed as a promising adsorbent for the efficient removal of benzene, xylene and ethylbenzene. © 2023 Elsevier B.V.Article Citation - WoS: 3Citation - Scopus: 3Determination of hydroxymethylfurfural in Turkish honeys, pekmez (grape molasses), and jam samples by high-performance liquid chromatography with diode array detection(Wiley Online Library, 2022) Elmastas, Ayhan; Aydin, Firat; Umaz, Adil; Kılınc, Ersin; Arslan, Yasin; aydin, IsilHydroxymethylfurfural (HMF) is a chemical contaminant that is not naturally present in carbohydrate-containing food samples. The HMF amounts were changed between 4.8 and 214.1 mg/kg in honey; between 7.8 and 204.0 mg/kg in pekmez (grape molasses); between 5.9 and 22.4 mg/kg in strawberry jam; between 6.0 and 65.4 mg/kg in apricot jam; and between 9.2 and 55.9 mg/kg in cherry found by HPLC. The linear calibration plot of HMF was ranged from 0.05 to 10.0 mu g/ml. The correlation coefficient was found to be 0.99997. LOD and LOQ values were found to be 12.0 and 40.0 ng/ml, respectively. According to the experimental results, HMF amounts of four honey samples, three pekmez (grape molasses) samples, one apricot jam, and one cherry jam for investigated samples were found to be higher than the permission amount of Turkish Food Codex. Novelty impact statement Based on experimental results in this study, if the honey is in a transparent package such as a glass, it should be stored in a dark environment. It would be healthier to prefer molasses produced by reliable brands at low temperatures under vacuum instead of molasses made with traditional methods in open boilers. Generally, since jams with high HMF amount have an overcooked or even burnt flavor, this is an extremely negative situation for consumers.Article Citation - WoS: 67Citation - Scopus: 73Ecofriendly Synthesis of Silver Nanoparticles Using Ananas comosus Fruit Peels: Anticancer and Antimicrobial Activities(Hindawi, 2021) Baran, Ayşe; Keskin, Cumali; Baran, Mehmet Fırat; Huseynova, Irada; Khalilov, Rovshan; Eftekhari, Aziz; Irtegun-Kandemir, Sevgi; Kavak, Deniz EvrimMetallic nanoparticles are valuable materials and have a range of uses. Nanoparticles synthesized from plant wastes by environment-friendly methods have attracted the attention of researchers in recent years. Also, the advantages of biological resources and synthesis methods are attracting attention. In this study, silver nanoparticles were synthesized from Ananas comosus fruit peels using ecofriendly method steps. The characterization of the particles obtained was determined by using a UV-visible spectrophotometer (UV-Vis.), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction diffractometer (XRD), Fourier scanning electron microscope (FESEM), and transmission electron microscopy (TEM). The nanoparticles showed maximum absorbance at 463 nm, measuring 11.61 in crystal nanosize, and presented spherical in appearance. An antimicrobial activity test was determined with the minimum inhibition concentration (MIC) method. The nanoparticles showed promising inhibitory activity on the Gram-positive and Gram-negative pathogen microorganisms (Escherichia coli ATCC25922, Staphylococcus aureus ATCC29213, Bacillus subtilis ATCC11774, Pseudomonas aeruginosa ATCC27833 bacteria, and Candida albicans yeast) at low concentrations. The cytotoxic and growth inhibitory effects of silver nanoparticles on different cancer cell lines were examined via the MTT assay. © 2021 Ayşe Baran et al.Article Citation - WoS: 1Citation - Scopus: 2Editorial: Biological/chemical-based metallic nanoparticles synthesis, characterization, and environmental applications(Frontiers Media S.A., 2023) Keskin, Cumali; Eftekhari, Aziz; Khalilov, Rovshan; Kavetskyy, Taras; Prasad, Ram; Rosic, Gvozden LukaParts of plants are used to carry out the reduction reactions. Although there are different methods for the synthesis of nanomaterials, biological synthesis is relatively cheap, environmentally friendly, and safe compared to other methods (Ahmadov and Ramazanli, 2019; Ramazanli and Ahmadov, 2022). The aim of the Research Topic on “Biological/Chemical-Based Metallic Nanoparticles Synthesis, Characterization, and Environmental Applications” was to provide an integrated view of the state-of-theartresearch on recent advances in biosynthesis, characterization of biological/chemicalbased nanomaterials, and their application by providing a comprehensive understanding of the topic through original research and review articles focusing on the biological synthesis method, in which bacteria, fungi, algae, and various.Article Citation - WoS: 3Citation - Scopus: 2The effect of mindfulness on medication adherence in individuals diagnosed with Schizophrenia: A cross-sectional study(PubMed, 2022) Yıldırım Üşenmez, Tülay; Gültekin, Abdurrezzak; Erkan, Fatma Melike; Dilmen Bayar, Behiye; Yaşar Can, Sevinç; Şanlı, Mehmet EminObjective: The aim of this study is to determine the effect of mindfulness on medication adherence in individuals diagnosed with schizophrenia. Materials and methods: This cross-sectional study was conducted with 147 individuals diagnosed with schizophrenia. The data were collected using the Descriptive Characteristics Form, Morisky Medication Adherence Scale, and Mindful Attention Awareness Scale. Results: A strong positive correlation was determined between the mindfulness level and medication adherence of the individuals diagnosed with schizophrenia. Furthermore, mindfulness of the individuals diagnosed with schizophrenia was statistically significant in explaining medication adherence (p < 0.05) and mindfulness predicted medication adherence by 64%. Conclusion: It was observed that the individuals' mindfulness level was low and half of the participants had low medication adherence. Moreover, as their mindfulness level increased, so did their medication adherence.Article Citation - WoS: 7Citation - Scopus: 10The Effect of Reiki on Anxiety, Stress, and Comfort Levels Before Gastrointestinal Endoscopy: A Randomized Sham-Controlled Trial(ScienceDirect, 2022) Utli, Hediye; Vural Doğru, BirgülPurpose: This study’s aim is to determine the effect of Reiki when applied before upper gastrointestinal endoscopy on levels of anxiety, stress, and comfort. Design: This single-blind, a pretest and post-test design, randomized, sham-controlled study was held between February and July 2021. Methods: Patients who met the inclusion criteria were separated by randomization into three groups: Reiki, sham Reiki, and control. A total of 159 patients participated in the study. In the intervention groups (Reiki and sham Reiki), Reiki and sham Reiki were applied once for approximately 20 to 25 minutes before gastrointestinal endoscopy. Findings: When the Reiki group was compared to the sham Reiki and control groups following the intervention, the decrease in the levels of patient stress (P < .001) and anxiety (P < .001) and the increase in patient comfort (P < .001) were found to be statistically significant. Conclusions: Reiki applied to patients before upper gastrointestinal endoscopy was effective in reducing stress and anxiety and in increasing comfort.Article Citation - WoS: 15Citation - Scopus: 17The Effects of Silver Nanoparticles (Agnps) on Thermophilic Bacteria: Antibacterial, Morphological, Physiological and Biochemical Investigations(MDPI, 2024) Jahan, Israt; Bekler, Fatma Matpan; Tunc, Ahmed; Guven, KemalSince thermophilic microorganisms are valuable sources of thermostable enzymes, it is essential to recognize the potential toxicity of silver nanoparticles used in diverse industrial sectors. Thermophilic bacteria Geobacillus vulcani 2Cx, Bacillus licheniformis 3CA, Paenibacillus macerans 3CA1, Anoxybacillus ayderensis FMB1, and Bacillus paralicheniformis FMB2-1 were selected, and their MIC and MBC values were assessed by treatment with AgNPs in a range of 62.5-1500 mu g mL(-1). The growth inhibition curves showed that the G. vulcani 2Cx, and B. paralicheniformis FMB2-1 strains were more sensitive to AgNPs, demonstrating a reduction in population by 71.1% and 31.7% at 62.5 mu g mL(-1) and by 82.9% and 72.8% at 250 mu g mL(-1), respectively. TEM and FT-IR analysis revealed that AgNPs caused structural damage, cytoplasmic leakage, and disruption of cellular integrity. Furthermore, cell viability showed a significant decrease alongside an increase in superoxide radical (SOR; O-2(-)) production. beta-galactosidase biosynthesis decreased to 28.8% level at 500 mu g mL(-1) AgNPs for G. vulcani 2Cx, 32.2% at 250 mu g mL(-1) for A. ayderensis FMB1, and 38.8% only at 62.5 mu g mL(-1), but it was completely inhibited at 500 mu g mL(-1) for B. licheniformis 3CA. Moreover, B. paralicheniformis FMB2-1 showed a significant decrease to 11.2% at 125 mu g mL(-1). This study is the first to reveal the toxic effects of AgNPs on thermophilic bacteria.Article Citation - WoS: 10Citation - Scopus: 11Endosulfan Elimination Using Amine-Modified Magnetic Diatomite as an Adsorbent(Frontiers in Chemistry, 2022) Alacabey, İhsanPesticides are among the most dangerous developing toxins since they are very hazardous to the environment and threaten human health. In this study, researchers successfully manufactured surface-modified magnetic diatomite (m-DE-APTES) and used them as a sorbent to extract endosulfan from an aqueous solution. There is no other study like it in the scholarly literature, and the results are astounding. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), electron spin resonance (ESR), and surface area measurements were used to analyze magnetic diatomite particles with surface modification. According to the analysis results, magnetic diatomite has a wide surface area and a porous structure. Furthermore, m-DE-APTES has a higher endosulfan adsorption capacity (97.2 mg g-1) than raw diatomite (DE) (16.6 mg g-1). Adsorption statistics agree with Langmuir adsorption isotherm (R 2 = 0.9905), and the adsorption occurred spontaneously at -2.576 kj mol-1 in terms of ΔGo. Finally, m-DE-APTES are a viable alternative adsorbent for removing pesticides from aqueous solutions.Article Citation - WoS: 34Citation - Scopus: 38Fabrication and characterization of 3,4-diaminobenzophenone-functionalized magnetic nanoadsorbent with enhanced VOC adsorption and desorption capacity(Environmental Science and Pollution Research, 2021) Ece, Mehmet Şakir; Şahin, Ömer; Kutluay, Sinan; Horoz, SabitThe present study, for the first time, utilized 3,4-diaminobenzophenone (DABP)-functionalized Fe3O4/AC@SiO2 (Fe3O4/AC@SiO2@DABP) magnetic nanoparticles (MNPs) synthesized as a nanoadsorbent for enhancing adsorption and desorption capacity of gaseous benzene and toluene as volatile organic compounds (VOCs). The Fe3O4/AC@SiO2@DABP MNPs used in adsorption and desorption of benzene and toluene were synthesized by the co-precipitation and sol-gel methods. The synthesized MNPs were characterized by SEM, FTIR, TGA/DTA, and BET surface area analysis. Moreover, the optimization of the process parameters, namely contact time, initial VOC concentration, and temperature, was performed by applying response surface methodology (RSM). Adsorption results demonstrated that the Fe3O4/AC@SiO2@DABP MNPs had excellent adsorption capacity. The maximum adsorption capacities for benzene and toluene were found as 530.99 and 666.00 mg/g, respectively, under optimum process parameters (contact time 55.47 min, initial benzene concentration 17.57 ppm, and temperature 29.09 °C; and contact time 57.54 min, initial toluene concentration 17.83 ppm, and temperature 27.93 °C for benzene and toluene, respectively). In addition to the distinctive adsorptive behavior, the Fe3O4/AC@SiO2@DABP MNPs exhibited a high reproducibility adsorption and desorption capacity. After the fifth adsorption and desorption cycles, the Fe3O4/AC@SiO2@DABP MNPs retained 94.4% and 95.4% of its initial adsorption capacity for benzene and toluene, respectively. Kinetic and isotherm findings suggested that the adsorption mechanisms of benzene and toluene on the Fe3O4/AC@SiO2@DABP MNPs were physical processes. The results indicated that the successfully synthesized Fe3O4/AC@SiO2@DABP MNPs can be applied as an attractive, highly effective, reusable, and cost-effective adsorbent for the adsorption of VOC pollutants. Graphical abstract[Figure not available: see fulltext.]Article Citation - WoS: 15Citation - Scopus: 18Fullerene C-60 functionalized gamma-Fe2O3 magnetic nanoparticle: Synthesis, characterization, and biomedical applications(TAYLOR & FRANCIS LTD, 2016) Kilinc, ErsinHybrid magnetic nanoparticles composed from C-60 fullerene and -Fe2O3 were synthesized by hydrothermal method. XRD, FT-IR, VSM, SEM, and HR-TEM were employed for characterizations. The magnetic saturation value of C-60--Fe2O3 magnetic nanoparticles was 66.5 emu g(- 1). Concentration of Fe in nanoparticles asdetermined by ICP-OES was 40.7% Fe. Particle size of C-60--Fe2O3 magnetic nanoparticles was smaller than 10 nm. Maximum adsorption capacity of C-60--Fe2O3 for flurbiprofen, a non-steroidal anti-inflammatory drug, was calculated from Langmuir isotherm as 142.9 mg g(- 1).Article Citation - WoS: 41Citation - Scopus: 48gamma-Fe2O3 magnetic nanoparticle functionalized with carboxylated multi walled carbon nanotube for magnetic solid phase extractions and determinations of Sudan dyes and Para Red in food samples(ELSEVIER SCI LTD, 2018) Kilinc, Ersin; Celik, Kadir Serdar; Bilgetekin, HavinHybrid nanostructures composed of gamma-Fe2O3 (maghemite) and carboxylated-multi walled carbon nanotube (cMWCNT) were used for the magnetic solid phase extractions and determination of Sudan I, II, III, IV, Para Red, Sudan Black B and Sudan Red 7B in chili products. High performance liquid chromatography (HPLC) was employed for the measurements. Limit of quantification (LOQ) values were found in the range 0.44-2.82 ng mL(-1) for analytes. The best extraction parameters were determined as pH 8.0, 40 mg of magnetic nanoparticle, 4.0 min of contact time, 0.3 mL desorption by acetonitrile. The samples were dissolved in acetone-dichloromethane-methanol (3: 2: 1, v/v/v) and diluted with acetonitrile-methanol (v/v; 80: 20) before the method was applied. Concentrations of Sudan dyes and Para Red were determined in four samples of chili powder from less than LOQ to 31.21 +/- 1.6 ng g(-1), two samples of chili tomato sauces (lower than LOQ) and two samples of ketchup (lower than LOQ).Article Citation - WoS: 96Citation - Scopus: 118Green Synthesis of Silver Nanoparticles from Allium cepa L. Peel Extract, Their Antioxidant, Antipathogenic, and Anticholinesterase Activity(Molecules, 2023) Keskin, Cumali; Mehmet Fırat Baran, Ayşe Baran, Abdulkerim Hatipoğlu, Mahmut Yildiztekin, Selçuk Küçükaydin, Kadri Kurt, Hülya Hoşgören. Moklesur Rahman Sarker, Albert Sufianov, Ozal Beylerli, Rovshan Khalilov, Aziz EftekhariThe present work deals with the green synthesis and characterization of silver nanoparticles (AgNPs) using Allium cepa (yellowish peel) and the evaluation of its antimicrobial, antioxidant, and anticholinesterase activities. For the synthesis of AgNPs, peel aqueous extract (200 mL) was treated with a 40 mM AgNO3 solution (200 mL) at room temperature, and a color change was observed. In UV-Visible spectroscopy, an absorption peak formation at ~439 nm was the sign that AgNPs were present in the reaction solution. UV-vis, FE-SEM, TEM, EDX, AFM, XRD, TG/DT analyses, and Zetasizer techniques were used to characterize the biosynthesized nanoparticles. The crystal average size and zeta potential of AC-AgNPs with predominantly spherical shapes were measured as 19.47 ± 1.12 nm and −13.1 mV, respectively. Pathogenic microorganisms Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans were used for the Minimum Inhibition Concentration (MIC) test. When compared to tested standard antibiotics, AC-AgNPs demonstrated good growth inhibitory activities on P. aeuruginosa, B. subtilis, and S. aureus strains. In vitro, the antioxidant properties of AC-AgNPs were measured using different spectrophotometric techniques. In the β-Carotene linoleic acid lipid peroxidation assay, AC-AgNPs showed the strongest antioxidant activity with an IC50 value of 116.9 µg/mL, followed by metal-chelating capacity and ABTS cation radical scavenging activity with IC50 values of 120.4 µg/mL and 128.5 µg/mL, respectively. The inhibitory effects of produced AgNPs on the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes were determined using spectrophotometric techniques. This study provides an eco-friendly, inexpensive, and easy method for the synthesis of AgNPs that can be used for biomedical activities and also has other possible industrial applications.Article Citation - WoS: 25Citation - Scopus: 30Green synthesis of silver nanoparticles mediated Diospyros kaki L. (Persimmon): determination of chemical composition and evaluation of their antimicrobials and anticancer activities(Frontiers in Chemistry, 2023) Keskin, Cumali; Ölçekçi, Ali; Baran, Ayşe; Baran, Mehmet Fırat; Eftekhari, Aziz; Gareev, IlgizThe eco-friendly synthesis of metallic nanoparticles (MNPs) using biological materials is an encouraging and innovativeness approach to nanotechnology. Among other synthesizing methods, biological methods are chosen because of their high efficiency and purity in many aspects. In this work, using the aqueous extract obtained from the green leaves of the D. kaki L. (DK); silver nanoparticles were synthesized in a short time and simply with an eco-friendly approach. The properties of the synthesized silver nanoparticles (AgNPs) were characterized using various techniques and measurements. In the characterization data of AgNPs, Maximum absorbance at 453.34 nm wavelengths, the average size distribution of 27.12 nm, the surface charge of -22.4 mV, and spherical appearance were observed. LC-ESI-MS/MS analysis was used to assess the compound composition of D. kaki leaf extract. The chemical profiling of the crude extract of D. kaki leaves revealed the presence of a variety of phytochemicals, predominantly phenolics, resulting in the identification of five major high-feature compounds: two major phenolic acids (Chlorogenic acid and Cynarin), and tree flavonol glucosides (hyperoside, quercetin-3-glucoside, and quercetin-3- D-xyloside). The components with the highest concentrations were cynarin, chlorogenic acid, quercetin-3- D-xyloside, hyperoside, and quercetin-3-glucoside, respectively. Antimicrobial results were determined by a MIC assay. The biosynthesized AgNPs exhibited strong antibacterial activity against the human and food pathogen Gram (+ and -) bacteria and good antifungal activity against pathogenic yeast. It was determined that 0.03-0.050 μg/mL concentrations ranges of DK-AgNPs were growth suppressive concentrations on all pathogen microorganisms. The MTT technique was used to study the cytotoxic effects of produced AgNPs on cancer cell lines (Glioblastoma (U118), Human Colorectal Adenocarcinoma (Caco-2), Human Ovarian Sarcoma (Skov-3) cancer cell lines, and Human Dermal Fibroblast (HDF) healthy cell line). It has been observed that they have a suppressive effect on the proliferation of cancerous cell lines. After 48 h of treatment with Ag-NPs, the DK-AgNPs were found to be extremely cytotoxic to the CaCo-2 cell line, inhibiting cell viability by up to 59.49% at a concentration of 50 g mL-1. It was found that the viability was inversely related to the DK-AgNP concentration. The biosynthesized AgNPs had dose-dependent anticancer efficacy. Because of the high concentration of bioactive chemicals in Diospyros kaki, it may be employed as a biological resource in medicinal applications. DK-AgNPs were shown to be an effective antibacterial agent as well as a prospective anticancer agent. The results provide a potential approach for the biogenic production of DK-AgNPs utilizing D. kaki aqueous leaf extract.Article Citation - WoS: 35Citation - Scopus: 39Highly improved solar cell efficiency of Mn-doped amine groups-functionalized magnetic Fe3O4@SiO2 nanomaterial(Wiley Online Library, 2021) Kutluay, Sinan; Horoz, Sabit; Şahin, Ömer; Ekinci, ArzuHerein, magnetic Fe3O4@SiO2 nanomaterial functionalized with amine groups (Fe3O4@SiO2@IPA) doped with manganese (Mn) was prepared, characterized and used for solar cell application. Fe3O4@SiO2@IPA-Mn was prepared via the co-precipitation and sol-gel techniques. Energy-dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) measurements were performed to examine the structure of Fe3O4, Fe3O4@SiO2, Fe3O4@SiO2@IPA and Fe3O4@SiO2@IPA-Mn. General morphology and textural properties of the prepared magnetic nanomaterials were clarified by Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM). In addition, Ultraviolet-visible (UV-Vis) spectroscopy and thermal gravimetric analysis (TGA) were used to have a knowledge about the energy band gap and thermal behavior of the prepared magnetic nanomaterials. The energy band gap of Fe3O4@SiO2@IPA with spinel structure was determined as approximately 2.48 eV. It was understood that Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@IPA showed type IV-H3 hysteresis cycle according to IUPAC. From the BET data, it was determined that the specific surface areas of Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@IPA were 60.85, 28.99 and 40.41 m(2)/g, respectively. The pore size distributions of Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@IPA were calculated as 8.55, 1.53 and 1.70 nm, respectively, by the BJH method. Also, it was observed that the dominant pore widths of Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@IPA were calculated similar to 5.58, similar to 0.88 and similar to 17.92 nm, respectively, by the DFT method. Au/CuO/Fe3O4@SiO2@IPA-Mn/ZnO/SnO2: F solar cell device was created using existing Fe3O4@SiO2@IPA-Mn as a buffer layer. The power conversion efficiency (%) of Fe3O4@SiO2@IPA-Mn based solar cell device was calculated as 2.054. This finding suggest that Fe3O4@SiO2@IPA-Mn can be used as a promising sensitizer in solar cell technology. Moreover, in this study, the effectiveness of the modification of manganese (one of the transition metals, which is cheap and easily available) with magnetic nanomaterials in the use of solar cell technology was demonstrated for the first time.Article Citation - WoS: 55Citation - Scopus: 61Investigation of the antibiotic resistance and biofilm-forming ability of Staphylococcus aureus from subclinical bovine mastitis cases(ELSEVIER SCIENCE INC, 2016) Aslantas, Ozkan; Demir, CemilA total of 112 Staphylococcus aureus isolates obtained from subclinical bovine mastitis cases were examined for antibiotic susceptibility and biofilm-forming ability as well as genes responsible for antibiotic resistance, biofilm-forming ability, and adhesin. Antimicrobial susceptibility of the isolates were determined by disk diffusion method. Biofilm forming ability of the isolates were investigated by Congo red agar method, standard tube method, and microplate method. The genes responsible for antibiotic resistance, biofilm-forming ability, and adhesion were examined by PCR. Five isolates (4.5%) were identified as methicillin-resistant Staph. aureus by antibiotic susceptibility testing and confirmed by mecA detection. The resistance rates to penicillin, ampicillin, tetracycline, erythromycin, trimethoprim-sulfamethoxazole, enrofloxacin, and amoxicillin-clavulanic acid were 45.5, 39.3, 33, 26.8, 5.4, 0.9, and 0.9%, respectively. All isolates were susceptible against vancomycin and gentamicin. The blaZ (100%), tetK (67.6%), and ermA (70%) genes were the most common antibiotic-resistance genes. Using Congo red agar, microplate, and standard tube methods, 70.5, 67, and 62.5% of the isolates were found to be biofilm producers, respectively. The percentage rate of icaA, icaD, and bap genes in Staph. aureus isolates were 86.6, 86.6, and 13.4%, respectively. The adhesion molecules fnbA, can, and clfA were detected in 87 (77.7%), 98 (87.5%), and 75 (70%) isolates, respectively. The results indicated that Staph. aureus from sublinical bovine mastitis cases were mainly resistant to beta-lactams and, to a lesser extent, to tetracycline and erythromycin. Also, biofilm- and adhesion-related genes, which are increasingly accepted as an important virulence factor in the pathogenesis of Staph. aureus infections, were detected at a high rate.
